from sympy.core.numbers import I from sympy.core.symbol import symbols from sympy.physics.paulialgebra import Pauli from sympy.testing.pytest import XFAIL from sympy.physics.quantum import TensorProduct sigma1 = Pauli(1) sigma2 = Pauli(2) sigma3 = Pauli(3) tau1 = symbols("tau1", commutative = False) def test_Pauli(): assert sigma1 == sigma1 assert sigma1 != sigma2 assert sigma1*sigma2 == I*sigma3 assert sigma3*sigma1 == I*sigma2 assert sigma2*sigma3 == I*sigma1 assert sigma1*sigma1 == 1 assert sigma2*sigma2 == 1 assert sigma3*sigma3 == 1 assert sigma1**0 == 1 assert sigma1**1 == sigma1 assert sigma1**2 == 1 assert sigma1**3 == sigma1 assert sigma1**4 == 1 assert sigma3**2 == 1 assert sigma1*2*sigma1 == 2 def test_evaluate_pauli_product(): from sympy.physics.paulialgebra import evaluate_pauli_product assert evaluate_pauli_product(I*sigma2*sigma3) == -sigma1 # Check issue 6471 assert evaluate_pauli_product(-I*4*sigma1*sigma2) == 4*sigma3 assert evaluate_pauli_product( 1 + I*sigma1*sigma2*sigma1*sigma2 + \ I*sigma1*sigma2*tau1*sigma1*sigma3 + \ ((tau1**2).subs(tau1, I*sigma1)) + \ sigma3*((tau1**2).subs(tau1, I*sigma1)) + \ TensorProduct(I*sigma1*sigma2*sigma1*sigma2, 1) ) == 1 -I + I*sigma3*tau1*sigma2 - 1 - sigma3 - I*TensorProduct(1,1) @XFAIL def test_Pauli_should_work(): assert sigma1*sigma3*sigma1 == -sigma3