"""Implementation of :class:`AlgebraicField` class. """ from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.field import Field from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyclasses import ANP from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed from sympy.utilities import public @public class AlgebraicField(Field, CharacteristicZero, SimpleDomain): r"""Algebraic number field :ref:`QQ(a)` A :ref:`QQ(a)` domain represents an `algebraic number field`_ `\mathbb{Q}(a)` as a :py:class:`~.Domain` in the domain system (see :ref:`polys-domainsintro`). A :py:class:`~.Poly` created from an expression involving `algebraic numbers`_ will treat the algebraic numbers as generators if the generators argument is not specified. >>> from sympy import Poly, Symbol, sqrt >>> x = Symbol('x') >>> Poly(x**2 + sqrt(2)) Poly(x**2 + (sqrt(2)), x, sqrt(2), domain='ZZ') That is a multivariate polynomial with ``sqrt(2)`` treated as one of the generators (variables). If the generators are explicitly specified then ``sqrt(2)`` will be considered to be a coefficient but by default the :ref:`EX` domain is used. To make a :py:class:`~.Poly` with a :ref:`QQ(a)` domain the argument ``extension=True`` can be given. >>> Poly(x**2 + sqrt(2), x) Poly(x**2 + sqrt(2), x, domain='EX') >>> Poly(x**2 + sqrt(2), x, extension=True) Poly(x**2 + sqrt(2), x, domain='QQ') A generator of the algebraic field extension can also be specified explicitly which is particularly useful if the coefficients are all rational but an extension field is needed (e.g. to factor the polynomial). >>> Poly(x**2 + 1) Poly(x**2 + 1, x, domain='ZZ') >>> Poly(x**2 + 1, extension=sqrt(2)) Poly(x**2 + 1, x, domain='QQ') It is possible to factorise a polynomial over a :ref:`QQ(a)` domain using the ``extension`` argument to :py:func:`~.factor` or by specifying the domain explicitly. >>> from sympy import factor, QQ >>> factor(x**2 - 2) x**2 - 2 >>> factor(x**2 - 2, extension=sqrt(2)) (x - sqrt(2))*(x + sqrt(2)) >>> factor(x**2 - 2, domain='QQ') (x - sqrt(2))*(x + sqrt(2)) >>> factor(x**2 - 2, domain=QQ.algebraic_field(sqrt(2))) (x - sqrt(2))*(x + sqrt(2)) The ``extension=True`` argument can be used but will only create an extension that contains the coefficients which is usually not enough to factorise the polynomial. >>> p = x**3 + sqrt(2)*x**2 - 2*x - 2*sqrt(2) >>> factor(p) # treats sqrt(2) as a symbol (x + sqrt(2))*(x**2 - 2) >>> factor(p, extension=True) (x - sqrt(2))*(x + sqrt(2))**2 >>> factor(x**2 - 2, extension=True) # all rational coefficients x**2 - 2 It is also possible to use :ref:`QQ(a)` with the :py:func:`~.cancel` and :py:func:`~.gcd` functions. >>> from sympy import cancel, gcd >>> cancel((x**2 - 2)/(x - sqrt(2))) (x**2 - 2)/(x - sqrt(2)) >>> cancel((x**2 - 2)/(x - sqrt(2)), extension=sqrt(2)) x + sqrt(2) >>> gcd(x**2 - 2, x - sqrt(2)) 1 >>> gcd(x**2 - 2, x - sqrt(2), extension=sqrt(2)) x - sqrt(2) When using the domain directly :ref:`QQ(a)` can be used as a constructor to create instances which then support the operations ``+,-,*,**,/``. The :py:meth:`~.Domain.algebraic_field` method is used to construct a particular :ref:`QQ(a)` domain. The :py:meth:`~.Domain.from_sympy` method can be used to create domain elements from normal SymPy expressions. >>> K = QQ.algebraic_field(sqrt(2)) >>> K QQ >>> xk = K.from_sympy(3 + 4*sqrt(2)) >>> xk # doctest: +SKIP ANP([4, 3], [1, 0, -2], QQ) Elements of :ref:`QQ(a)` are instances of :py:class:`~.ANP` which have limited printing support. The raw display shows the internal representation of the element as the list ``[4, 3]`` representing the coefficients of ``1`` and ``sqrt(2)`` for this element in the form ``a * sqrt(2) + b * 1`` where ``a`` and ``b`` are elements of :ref:`QQ`. The minimal polynomial for the generator ``(x**2 - 2)`` is also shown in the :ref:`dup-representation` as the list ``[1, 0, -2]``. We can use :py:meth:`~.Domain.to_sympy` to get a better printed form for the elements and to see the results of operations. >>> xk = K.from_sympy(3 + 4*sqrt(2)) >>> yk = K.from_sympy(2 + 3*sqrt(2)) >>> xk * yk # doctest: +SKIP ANP([17, 30], [1, 0, -2], QQ) >>> K.to_sympy(xk * yk) 17*sqrt(2) + 30 >>> K.to_sympy(xk + yk) 5 + 7*sqrt(2) >>> K.to_sympy(xk ** 2) 24*sqrt(2) + 41 >>> K.to_sympy(xk / yk) sqrt(2)/14 + 9/7 Any expression representing an algebraic number can be used to generate a :ref:`QQ(a)` domain provided its `minimal polynomial`_ can be computed. The function :py:func:`~.minpoly` function is used for this. >>> from sympy import exp, I, pi, minpoly >>> g = exp(2*I*pi/3) >>> g exp(2*I*pi/3) >>> g.is_algebraic True >>> minpoly(g, x) x**2 + x + 1 >>> factor(x**3 - 1, extension=g) (x - 1)*(x - exp(2*I*pi/3))*(x + 1 + exp(2*I*pi/3)) It is also possible to make an algebraic field from multiple extension elements. >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K QQ >>> p = x**4 - 5*x**2 + 6 >>> factor(p) (x**2 - 3)*(x**2 - 2) >>> factor(p, domain=K) (x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3)) >>> factor(p, extension=[sqrt(2), sqrt(3)]) (x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3)) Multiple extension elements are always combined together to make a single `primitive element`_. In the case of ``[sqrt(2), sqrt(3)]`` the primitive element chosen is ``sqrt(2) + sqrt(3)`` which is why the domain displays as ``QQ``. The minimal polynomial for the primitive element is computed using the :py:func:`~.primitive_element` function. >>> from sympy import primitive_element >>> primitive_element([sqrt(2), sqrt(3)], x) (x**4 - 10*x**2 + 1, [1, 1]) >>> minpoly(sqrt(2) + sqrt(3), x) x**4 - 10*x**2 + 1 The extension elements that generate the domain can be accessed from the domain using the :py:attr:`~.ext` and :py:attr:`~.orig_ext` attributes as instances of :py:class:`~.AlgebraicNumber`. The minimal polynomial for the primitive element as a :py:class:`~.DMP` instance is available as :py:attr:`~.mod`. >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K QQ >>> K.ext sqrt(2) + sqrt(3) >>> K.orig_ext (sqrt(2), sqrt(3)) >>> K.mod DMP([1, 0, -10, 0, 1], QQ, None) The `discriminant`_ of the field can be obtained from the :py:meth:`~.discriminant` method, and an `integral basis`_ from the :py:meth:`~.integral_basis` method. The latter returns a list of :py:class:`~.ANP` instances by default, but can be made to return instances of :py:class:`~.Expr` or :py:class:`~.AlgebraicNumber` by passing a ``fmt`` argument. The maximal order, or ring of integers, of the field can also be obtained from the :py:meth:`~.maximal_order` method, as a :py:class:`~sympy.polys.numberfields.modules.Submodule`. >>> zeta5 = exp(2*I*pi/5) >>> K = QQ.algebraic_field(zeta5) >>> K QQ >>> K.discriminant() 125 >>> K = QQ.algebraic_field(sqrt(5)) >>> K QQ >>> K.integral_basis(fmt='sympy') [1, 1/2 + sqrt(5)/2] >>> K.maximal_order() Submodule[[2, 0], [1, 1]]/2 The factorization of a rational prime into prime ideals of the field is computed by the :py:meth:`~.primes_above` method, which returns a list of :py:class:`~sympy.polys.numberfields.primes.PrimeIdeal` instances. >>> zeta7 = exp(2*I*pi/7) >>> K = QQ.algebraic_field(zeta7) >>> K QQ >>> K.primes_above(11) [(11, _x**3 + 5*_x**2 + 4*_x - 1), (11, _x**3 - 4*_x**2 - 5*_x - 1)] The Galois group of the Galois closure of the field can be computed (when the minimal polynomial of the field is of sufficiently small degree). >>> K.galois_group(by_name=True)[0] S6TransitiveSubgroups.C6 Notes ===== It is not currently possible to generate an algebraic extension over any domain other than :ref:`QQ`. Ideally it would be possible to generate extensions like ``QQ(x)(sqrt(x**2 - 2))``. This is equivalent to the quotient ring ``QQ(x)[y]/(y**2 - x**2 + 2)`` and there are two implementations of this kind of quotient ring/extension in the :py:class:`~.QuotientRing` and :py:class:`~.MonogenicFiniteExtension` classes. Each of those implementations needs some work to make them fully usable though. .. _algebraic number field: https://en.wikipedia.org/wiki/Algebraic_number_field .. _algebraic numbers: https://en.wikipedia.org/wiki/Algebraic_number .. _discriminant: https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field .. _integral basis: https://en.wikipedia.org/wiki/Algebraic_number_field#Integral_basis .. _minimal polynomial: https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory) .. _primitive element: https://en.wikipedia.org/wiki/Primitive_element_theorem """ dtype = ANP is_AlgebraicField = is_Algebraic = True is_Numerical = True has_assoc_Ring = False has_assoc_Field = True def __init__(self, dom, *ext, alias=None): r""" Parameters ========== dom : :py:class:`~.Domain` The base field over which this is an extension field. Currently only :ref:`QQ` is accepted. *ext : One or more :py:class:`~.Expr` Generators of the extension. These should be expressions that are algebraic over `\mathbb{Q}`. alias : str, :py:class:`~.Symbol`, None, optional (default=None) If provided, this will be used as the alias symbol for the primitive element of the :py:class:`~.AlgebraicField`. If ``None``, while ``ext`` consists of exactly one :py:class:`~.AlgebraicNumber`, its alias (if any) will be used. """ if not dom.is_QQ: raise DomainError("ground domain must be a rational field") from sympy.polys.numberfields import to_number_field if len(ext) == 1 and isinstance(ext[0], tuple): orig_ext = ext[0][1:] else: orig_ext = ext if alias is None and len(ext) == 1: alias = getattr(ext[0], 'alias', None) self.orig_ext = orig_ext """ Original elements given to generate the extension. >>> from sympy import QQ, sqrt >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K.orig_ext (sqrt(2), sqrt(3)) """ self.ext = to_number_field(ext, alias=alias) """ Primitive element used for the extension. >>> from sympy import QQ, sqrt >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K.ext sqrt(2) + sqrt(3) """ self.mod = self.ext.minpoly.rep """ Minimal polynomial for the primitive element of the extension. >>> from sympy import QQ, sqrt >>> K = QQ.algebraic_field(sqrt(2)) >>> K.mod DMP([1, 0, -2], QQ, None) """ self.domain = self.dom = dom self.ngens = 1 self.symbols = self.gens = (self.ext,) self.unit = self([dom(1), dom(0)]) self.zero = self.dtype.zero(self.mod.rep, dom) self.one = self.dtype.one(self.mod.rep, dom) self._maximal_order = None self._discriminant = None self._nilradicals_mod_p = {} def new(self, element): return self.dtype(element, self.mod.rep, self.dom) def __str__(self): return str(self.dom) + '<' + str(self.ext) + '>' def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.dom, self.ext)) def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, AlgebraicField) and \ self.dtype == other.dtype and self.ext == other.ext def algebraic_field(self, *extension, alias=None): r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """ return AlgebraicField(self.dom, *((self.ext,) + extension), alias=alias) def to_alg_num(self, a): """Convert ``a`` of ``dtype`` to an :py:class:`~.AlgebraicNumber`. """ return self.ext.field_element(a) def to_sympy(self, a): """Convert ``a`` of ``dtype`` to a SymPy object. """ # Precompute a converter to be reused: if not hasattr(self, '_converter'): self._converter = _make_converter(self) return self._converter(a) def from_sympy(self, a): """Convert SymPy's expression to ``dtype``. """ try: return self([self.dom.from_sympy(a)]) except CoercionFailed: pass from sympy.polys.numberfields import to_number_field try: return self(to_number_field(a, self.ext).native_coeffs()) except (NotAlgebraic, IsomorphismFailed): raise CoercionFailed( "%s is not a valid algebraic number in %s" % (a, self)) def from_ZZ(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_RealField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) def is_positive(self, a): """Returns True if ``a`` is positive. """ return self.dom.is_positive(a.LC()) def is_negative(self, a): """Returns True if ``a`` is negative. """ return self.dom.is_negative(a.LC()) def is_nonpositive(self, a): """Returns True if ``a`` is non-positive. """ return self.dom.is_nonpositive(a.LC()) def is_nonnegative(self, a): """Returns True if ``a`` is non-negative. """ return self.dom.is_nonnegative(a.LC()) def numer(self, a): """Returns numerator of ``a``. """ return a def denom(self, a): """Returns denominator of ``a``. """ return self.one def from_AlgebraicField(K1, a, K0): """Convert AlgebraicField element 'a' to another AlgebraicField """ return K1.from_sympy(K0.to_sympy(a)) def from_GaussianIntegerRing(K1, a, K0): """Convert a GaussianInteger element 'a' to ``dtype``. """ return K1.from_sympy(K0.to_sympy(a)) def from_GaussianRationalField(K1, a, K0): """Convert a GaussianRational element 'a' to ``dtype``. """ return K1.from_sympy(K0.to_sympy(a)) def _do_round_two(self): from sympy.polys.numberfields.basis import round_two ZK, dK = round_two(self, radicals=self._nilradicals_mod_p) self._maximal_order = ZK self._discriminant = dK def maximal_order(self): """ Compute the maximal order, or ring of integers, of the field. Returns ======= :py:class:`~sympy.polys.numberfields.modules.Submodule`. See Also ======== integral_basis """ if self._maximal_order is None: self._do_round_two() return self._maximal_order def integral_basis(self, fmt=None): r""" Get an integral basis for the field. Parameters ========== fmt : str, None, optional (default=None) If ``None``, return a list of :py:class:`~.ANP` instances. If ``"sympy"``, convert each element of the list to an :py:class:`~.Expr`, using ``self.to_sympy()``. If ``"alg"``, convert each element of the list to an :py:class:`~.AlgebraicNumber`, using ``self.to_alg_num()``. Examples ======== >>> from sympy import QQ, AlgebraicNumber, sqrt >>> alpha = AlgebraicNumber(sqrt(5), alias='alpha') >>> k = QQ.algebraic_field(alpha) >>> B0 = k.integral_basis() >>> B1 = k.integral_basis(fmt='sympy') >>> B2 = k.integral_basis(fmt='alg') >>> print(B0[1]) # doctest: +SKIP ANP([mpq(1,2), mpq(1,2)], [mpq(1,1), mpq(0,1), mpq(-5,1)], QQ) >>> print(B1[1]) 1/2 + alpha/2 >>> print(B2[1]) alpha/2 + 1/2 In the last two cases we get legible expressions, which print somewhat differently because of the different types involved: >>> print(type(B1[1])) >>> print(type(B2[1])) See Also ======== to_sympy to_alg_num maximal_order """ ZK = self.maximal_order() M = ZK.QQ_matrix n = M.shape[1] B = [self.new(list(reversed(M[:, j].flat()))) for j in range(n)] if fmt == 'sympy': return [self.to_sympy(b) for b in B] elif fmt == 'alg': return [self.to_alg_num(b) for b in B] return B def discriminant(self): """Get the discriminant of the field.""" if self._discriminant is None: self._do_round_two() return self._discriminant def primes_above(self, p): """Compute the prime ideals lying above a given rational prime *p*.""" from sympy.polys.numberfields.primes import prime_decomp ZK = self.maximal_order() dK = self.discriminant() rad = self._nilradicals_mod_p.get(p) return prime_decomp(p, ZK=ZK, dK=dK, radical=rad) def galois_group(self, by_name=False, max_tries=30, randomize=False): """ Compute the Galois group of the Galois closure of this field. Examples ======== If the field is Galois, the order of the group will equal the degree of the field: >>> from sympy import QQ >>> from sympy.abc import x >>> k = QQ.alg_field_from_poly(x**4 + 1) >>> G, _ = k.galois_group() >>> G.order() 4 If the field is not Galois, then its Galois closure is a proper extension, and the order of the Galois group will be greater than the degree of the field: >>> k = QQ.alg_field_from_poly(x**4 - 2) >>> G, _ = k.galois_group() >>> G.order() 8 See Also ======== sympy.polys.numberfields.galoisgroups.galois_group """ return self.ext.minpoly_of_element().galois_group( by_name=by_name, max_tries=max_tries, randomize=randomize) def _make_converter(K): """Construct the converter to convert back to Expr""" # Precompute the effect of converting to SymPy and expanding expressions # like (sqrt(2) + sqrt(3))**2. Asking Expr to do the expansion on every # conversion from K to Expr is slow. Here we compute the expansions for # each power of the generator and collect together the resulting algebraic # terms and the rational coefficients into a matrix. gen = K.ext.as_expr() todom = K.dom.from_sympy # We'll let Expr compute the expansions. We won't make any presumptions # about what this results in except that it is QQ-linear in some terms # that we will call algebraics. The final result will be expressed in # terms of those. powers = [S.One, gen] for n in range(2, K.mod.degree()): powers.append((gen * powers[-1]).expand()) # Collect the rational coefficients and algebraic Expr that can # map the ANP coefficients into an expanded SymPy expression terms = [dict(t.as_coeff_Mul()[::-1] for t in Add.make_args(p)) for p in powers] algebraics = set().union(*terms) matrix = [[todom(t.get(a, S.Zero)) for t in terms] for a in algebraics] # Create a function to do the conversion efficiently: def converter(a): """Convert a to Expr using converter""" ai = a.rep[::-1] tosympy = K.dom.to_sympy coeffs_dom = [sum(mij*aj for mij, aj in zip(mi, ai)) for mi in matrix] coeffs_sympy = [tosympy(c) for c in coeffs_dom] res = Add(*(Mul(c, a) for c, a in zip(coeffs_sympy, algebraics))) return res return converter