from sympy.concrete.summations import Sum from sympy.core.mod import Mod from sympy.core.relational import (Equality, Unequality) from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.gamma_functions import polygamma from sympy.functions.special.error_functions import (Si, Ci) from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import Identity from sympy.utilities.lambdify import lambdify from sympy.abc import x, i, j, a, b, c, d from sympy.core import Pow from sympy.codegen.matrix_nodes import MatrixSolve from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt from sympy.tensor.array import Array from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \ PermuteDims, ArrayDiagonal from sympy.printing.numpy import NumPyPrinter, SciPyPrinter, _numpy_known_constants, \ _numpy_known_functions, _scipy_known_constants, _scipy_known_functions from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array from sympy.testing.pytest import skip, raises from sympy.external import import_module np = import_module('numpy') if np: deafult_float_info = np.finfo(np.array([]).dtype) NUMPY_DEFAULT_EPSILON = deafult_float_info.eps def test_numpy_piecewise_regression(): """ NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+. See gh-9747 and gh-9749 for details. """ printer = NumPyPrinter() p = Piecewise((1, x < 0), (0, True)) assert printer.doprint(p) == \ 'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)' assert printer.module_imports == {'numpy': {'select', 'less', 'nan'}} def test_numpy_logaddexp(): lae = logaddexp(a, b) assert NumPyPrinter().doprint(lae) == 'numpy.logaddexp(a, b)' lae2 = logaddexp2(a, b) assert NumPyPrinter().doprint(lae2) == 'numpy.logaddexp2(a, b)' def test_sum(): if not np: skip("NumPy not installed") s = Sum(x ** i, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1))) s = Sum(i * x, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1))) def test_multiple_sums(): if not np: skip("NumPy not installed") s = Sum((x + j) * i, (i, a, b), (j, c, d)) f = lambdify((a, b, c, d, x), s, 'numpy') a_, b_ = 0, 10 c_, d_ = 11, 21 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, c_, d_, x_), sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1))) def test_codegen_einsum(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = convert_matrix_to_array(M * N) f = lambdify((M, N), cg, 'numpy') ma = np.array([[1, 2], [3, 4]]) mb = np.array([[1,-2], [-1, 3]]) assert (f(ma, mb) == np.matmul(ma, mb)).all() def test_codegen_extra(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = np.array([[1, 2], [3, 4]]) mb = np.array([[1,-2], [-1, 3]]) mc = np.array([[2, 0], [1, 2]]) md = np.array([[1,-1], [4, 7]]) cg = ArrayTensorProduct(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all() cg = ArrayAdd(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == ma+mb).all() cg = ArrayAdd(M, N, P) f = lambdify((M, N, P), cg, 'numpy') assert (f(ma, mb, mc) == ma+mb+mc).all() cg = ArrayAdd(M, N, P, Q) f = lambdify((M, N, P, Q), cg, 'numpy') assert (f(ma, mb, mc, md) == ma+mb+mc+md).all() cg = PermuteDims(M, [1, 0]) f = lambdify((M,), cg, 'numpy') assert (f(ma) == ma.T).all() cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0]) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all() cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all() def test_relational(): if not np: skip("NumPy not installed") e = Equality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, False]) e = Unequality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, True]) e = (x < 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, False]) e = (x <= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, True, False]) e = (x > 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, False, True]) e = (x >= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, True]) def test_mod(): if not np: skip("NumPy not installed") e = Mod(a, b) f = lambdify((a, b), e) a_ = np.array([0, 1, 2, 3]) b_ = 2 assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([0, 1, 2, 3]) b_ = np.array([2, 2, 2, 2]) assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([2, 3, 4, 5]) b_ = np.array([2, 3, 4, 5]) assert np.array_equal(f(a_, b_), [0, 0, 0, 0]) def test_pow(): if not np: skip('NumPy not installed') expr = Pow(2, -1, evaluate=False) f = lambdify([], expr, 'numpy') assert f() == 0.5 def test_expm1(): if not np: skip("NumPy not installed") f = lambdify((a,), expm1(a), 'numpy') assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * NUMPY_DEFAULT_EPSILON def test_log1p(): if not np: skip("NumPy not installed") f = lambdify((a,), log1p(a), 'numpy') assert abs(f(1e-99) - 1e-99) <= 1e-99 * NUMPY_DEFAULT_EPSILON def test_hypot(): if not np: skip("NumPy not installed") assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) <= NUMPY_DEFAULT_EPSILON def test_log10(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) <= NUMPY_DEFAULT_EPSILON def test_exp2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) <= NUMPY_DEFAULT_EPSILON def test_log2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) <= NUMPY_DEFAULT_EPSILON def test_Sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON def test_sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON def test_matsolve(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 3, 3) x = MatrixSymbol("x", 3, 1) expr = M**(-1) * x + x matsolve_expr = MatrixSolve(M, x) + x f = lambdify((M, x), expr) f_matsolve = lambdify((M, x), matsolve_expr) m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]]) assert np.linalg.matrix_rank(m0) == 3 x0 = np.array([3, 4, 5]) assert np.allclose(f_matsolve(m0, x0), f(m0, x0)) def test_16857(): if not np: skip("NumPy not installed") a_1 = MatrixSymbol('a_1', 10, 3) a_2 = MatrixSymbol('a_2', 10, 3) a_3 = MatrixSymbol('a_3', 10, 3) a_4 = MatrixSymbol('a_4', 10, 3) A = BlockMatrix([[a_1, a_2], [a_3, a_4]]) assert A.shape == (20, 6) printer = NumPyPrinter() assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])' def test_issue_17006(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) f = lambdify(M, M + Identity(2)) ma = np.array([[1, 2], [3, 4]]) mr = np.array([[2, 2], [3, 5]]) assert (f(ma) == mr).all() from sympy.core.symbol import symbols n = symbols('n', integer=True) N = MatrixSymbol("M", n, n) raises(NotImplementedError, lambda: lambdify(N, N + Identity(n))) def test_numpy_array(): assert NumPyPrinter().doprint(Array(((1, 2), (3, 5)))) == 'numpy.array([[1, 2], [3, 5]])' assert NumPyPrinter().doprint(Array((1, 2))) == 'numpy.array((1, 2))' def test_numpy_known_funcs_consts(): assert _numpy_known_constants['NaN'] == 'numpy.nan' assert _numpy_known_constants['EulerGamma'] == 'numpy.euler_gamma' assert _numpy_known_functions['acos'] == 'numpy.arccos' assert _numpy_known_functions['log'] == 'numpy.log' def test_scipy_known_funcs_consts(): assert _scipy_known_constants['GoldenRatio'] == 'scipy.constants.golden_ratio' assert _scipy_known_constants['Pi'] == 'scipy.constants.pi' assert _scipy_known_functions['erf'] == 'scipy.special.erf' assert _scipy_known_functions['factorial'] == 'scipy.special.factorial' def test_numpy_print_methods(): prntr = NumPyPrinter() assert hasattr(prntr, '_print_acos') assert hasattr(prntr, '_print_log') def test_scipy_print_methods(): prntr = SciPyPrinter() assert hasattr(prntr, '_print_acos') assert hasattr(prntr, '_print_log') assert hasattr(prntr, '_print_erf') assert hasattr(prntr, '_print_factorial') assert hasattr(prntr, '_print_chebyshevt') k = Symbol('k', integer=True, nonnegative=True) x = Symbol('x', real=True) assert prntr.doprint(polygamma(k, x)) == "scipy.special.polygamma(k, x)" assert prntr.doprint(Si(x)) == "scipy.special.sici(x)[0]" assert prntr.doprint(Ci(x)) == "scipy.special.sici(x)[1]"