from sympy.core.function import PoleError from sympy.core.numbers import oo from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.series.order import O from sympy.abc import x from sympy.testing.pytest import raises def test_simple(): # Gruntz' theses pp. 91 to 96 # 6.6 e = sin(1/x + exp(-x)) - sin(1/x) assert e.aseries(x) == (1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x) e = exp(x) * (exp(1/x + exp(-x)) - exp(1/x)) assert e.aseries(x, n=4) == 1/(6*x**3) + 1/(2*x**2) + 1/x + 1 + O(x**(-4), (x, oo)) e = exp(exp(x) / (1 - 1/x)) assert e.aseries(x) == exp(exp(x) / (1 - 1/x)) # The implementation of bound in aseries is incorrect currently. This test # should be commented out when that is fixed. # assert e.aseries(x, bound=3) == exp(exp(x) / x**2)*exp(exp(x) / x)*exp(-exp(x) + exp(x)/(1 - 1/x) - \ # exp(x) / x - exp(x) / x**2) * exp(exp(x)) e = exp(sin(1/x + exp(-exp(x)))) - exp(sin(1/x)) assert e.aseries(x, n=4) == (-1/(2*x**3) + 1/x + 1 + O(x**(-4), (x, oo)))*exp(-exp(x)) e3 = lambda x:exp(exp(exp(x))) e = e3(x)/e3(x - 1/e3(x)) assert e.aseries(x, n=3) == 1 + exp(x + exp(x))*exp(-exp(exp(x)))\ + ((-exp(x)/2 - S.Half)*exp(x + exp(x))\ + exp(2*x + 2*exp(x))/2)*exp(-2*exp(exp(x))) + O(exp(-3*exp(exp(x))), (x, oo)) e = exp(exp(x)) * (exp(sin(1/x + 1/exp(exp(x)))) - exp(sin(1/x))) assert e.aseries(x, n=4) == -1/(2*x**3) + 1/x + 1 + O(x**(-4), (x, oo)) n = Symbol('n', integer=True) e = (sqrt(n)*log(n)**2*exp(sqrt(log(n))*log(log(n))**2*exp(sqrt(log(log(n)))*log(log(log(n)))**3)))/n assert e.aseries(n) == \ exp(exp(sqrt(log(log(n)))*log(log(log(n)))**3)*sqrt(log(n))*log(log(n))**2)*log(n)**2/sqrt(n) def test_hierarchical(): e = sin(1/x + exp(-x)) assert e.aseries(x, n=3, hir=True) == -exp(-2*x)*sin(1/x)/2 + \ exp(-x)*cos(1/x) + sin(1/x) + O(exp(-3*x), (x, oo)) e = sin(x) * cos(exp(-x)) assert e.aseries(x, hir=True) == exp(-4*x)*sin(x)/24 - \ exp(-2*x)*sin(x)/2 + sin(x) + O(exp(-6*x), (x, oo)) raises(PoleError, lambda: e.aseries(x))