from sympy.core.function import (Function, Lambda, expand) from sympy.core.numbers import (I, Rational) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.combinatorial.factorials import (rf, binomial, factorial) from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.polys.polytools import factor from sympy.solvers.recurr import rsolve, rsolve_hyper, rsolve_poly, rsolve_ratio from sympy.testing.pytest import raises, slow, XFAIL from sympy.abc import a, b y = Function('y') n, k = symbols('n,k', integer=True) C0, C1, C2 = symbols('C0,C1,C2') def test_rsolve_poly(): assert rsolve_poly([-1, -1, 1], 0, n) == 0 assert rsolve_poly([-1, -1, 1], 1, n) == -1 assert rsolve_poly([-1, n + 1], n, n) == 1 assert rsolve_poly([-1, 1], n, n) == C0 + (n**2 - n)/2 assert rsolve_poly([-n - 1, n], 1, n) == C0*n - 1 assert rsolve_poly([-4*n - 2, 1], 4*n + 1, n) == -1 assert rsolve_poly([-1, 1], n**5 + n**3, n) == \ C0 - n**3 / 2 - n**5 / 2 + n**2 / 6 + n**6 / 6 + 2*n**4 / 3 def test_rsolve_ratio(): solution = rsolve_ratio([-2*n**3 + n**2 + 2*n - 1, 2*n**3 + n**2 - 6*n, -2*n**3 - 11*n**2 - 18*n - 9, 2*n**3 + 13*n**2 + 22*n + 8], 0, n) assert solution == C0*(2*n - 3)/(n**2 - 1)/2 def test_rsolve_hyper(): assert rsolve_hyper([-1, -1, 1], 0, n) in [ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n, C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n, ] assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n), C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n), ] assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n), C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n), ] assert rsolve_hyper( [2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n assert rsolve_hyper( [n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == 0 assert rsolve_hyper([-n - 1, -1, 1], 0, n) == 0 assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2 assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2 assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2) assert rsolve_hyper([1, 1, 1], 0, n).expand() == \ C0*(Rational(-1, 2) - sqrt(3)*I/2)**n + C1*(Rational(-1, 2) + sqrt(3)*I/2)**n assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) == 0 @XFAIL def test_rsolve_ratio_missed(): # this arises during computation # assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n assert rsolve_ratio([-n, n + 2], n, n) is not None def recurrence_term(c, f): """Compute RHS of recurrence in f(n) with coefficients in c.""" return sum(c[i]*f.subs(n, n + i) for i in range(len(c))) def test_rsolve_bulk(): """Some bulk-generated tests.""" funcs = [ n, n + 1, n**2, n**3, n**4, n + n**2, 27*n + 52*n**2 - 3* n**3 + 12*n**4 - 52*n**5 ] coeffs = [ [-2, 1], [-2, -1, 1], [-1, 1, 1, -1, 1], [-n, 1], [n**2 - n + 12, 1] ] for p in funcs: # compute difference for c in coeffs: q = recurrence_term(c, p) if p.is_polynomial(n): assert rsolve_poly(c, q, n) == p # See issue 3956: if p.is_hypergeometric(n) and len(c) <= 3: assert rsolve_hyper(c, q, n).subs(zip(symbols('C:3'), [0, 0, 0])).expand() == p def test_rsolve_0_sol_homogeneous(): # fixed by cherry-pick from # https://github.com/diofant/diofant/commit/e1d2e52125199eb3df59f12e8944f8a5f24b00a5 assert rsolve_hyper([n**2 - n + 12, 1], n*(n**2 - n + 12) + n + 1, n) == n def test_rsolve(): f = y(n + 2) - y(n + 1) - y(n) h = sqrt(5)*(S.Half + S.Half*sqrt(5))**n \ - sqrt(5)*(S.Half - S.Half*sqrt(5))**n assert rsolve(f, y(n)) in [ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n, C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n, ] assert rsolve(f, y(n), [0, 5]) == h assert rsolve(f, y(n), {0: 0, 1: 5}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 5}) == h assert rsolve(y(n) - y(n - 1) - y(n - 2), y(n), [0, 5]) == h assert rsolve(Eq(y(n), y(n - 1) + y(n - 2)), y(n), [0, 5]) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n) g = C1*factorial(n) + C0*2**n h = -3*factorial(n) + 3*2**n assert rsolve(f, y(n)) == g assert rsolve(f, y(n), []) == g assert rsolve(f, y(n), {}) == g assert rsolve(f, y(n), [0, 3]) == h assert rsolve(f, y(n), {0: 0, 1: 3}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 3}) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - y(n - 1) - 2 assert rsolve(f, y(n), {y(0): 0}) == 2*n assert rsolve(f, y(n), {y(0): 1}) == 2*n + 1 assert rsolve(f, y(n), {y(0): 0, y(1): 1}) is None assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = 3*y(n - 1) - y(n) - 1 assert rsolve(f, y(n), {y(0): 0}) == -3**n/2 + S.Half assert rsolve(f, y(n), {y(0): 1}) == 3**n/2 + S.Half assert rsolve(f, y(n), {y(0): 2}) == 3*3**n/2 + S.Half assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1/n*y(n - 1) assert rsolve(f, y(n)) == C0/factorial(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1/n*y(n - 1) - 1 assert rsolve(f, y(n)) is None f = 2*y(n - 1) + (1 - n)*y(n)/n assert rsolve(f, y(n), {y(1): 1}) == 2**(n - 1)*n assert rsolve(f, y(n), {y(1): 2}) == 2**(n - 1)*n*2 assert rsolve(f, y(n), {y(1): 3}) == 2**(n - 1)*n*3 assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1)*(n - 2)*y(n + 2) - (n + 1)*(n + 2)*y(n) assert rsolve(f, y(n), {y(3): 6, y(4): 24}) == n*(n - 1)*(n - 2) assert rsolve( f, y(n), {y(3): 6, y(4): -24}) == -n*(n - 1)*(n - 2)*(-1)**(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 assert rsolve(Eq(y(n + 1), a*y(n)), y(n), {y(1): a}).simplify() == a**n assert rsolve(y(n) - a*y(n-2),y(n), \ {y(1): sqrt(a)*(a + b), y(2): a*(a - b)}).simplify() == \ a**(n/2 + 1) - b*(-sqrt(a))**n f = (-16*n**2 + 32*n - 12)*y(n - 1) + (4*n**2 - 12*n + 9)*y(n) yn = rsolve(f, y(n), {y(1): binomial(2*n + 1, 3)}) sol = 2**(2*n)*n*(2*n - 1)**2*(2*n + 1)/12 assert factor(expand(yn, func=True)) == sol sol = rsolve(y(n) + a*(y(n + 1) + y(n - 1))/2, y(n)) assert str(sol) == 'C0*((-sqrt(1 - a**2) - 1)/a)**n + C1*((sqrt(1 - a**2) - 1)/a)**n' assert rsolve((k + 1)*y(k), y(k)) is None assert (rsolve((k + 1)*y(k) + (k + 3)*y(k + 1) + (k + 5)*y(k + 2), y(k)) is None) assert rsolve(y(n) + y(n + 1) + 2**n + 3**n, y(n)) == (-1)**n*C0 - 2**n/3 - 3**n/4 def test_rsolve_raises(): x = Function('x') raises(ValueError, lambda: rsolve(y(n) - y(k + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - y(n + 1), x(n))) raises(ValueError, lambda: rsolve(y(n) - x(n + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - sqrt(n)*y(n + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - y(n + 1), y(n), {x(0): 0})) raises(ValueError, lambda: rsolve(y(n) + y(n + 1) + 2**n + cos(n), y(n))) def test_issue_6844(): f = y(n + 2) - y(n + 1) + y(n)/4 assert rsolve(f, y(n)) == 2**(-n + 1)*C1*n + 2**(-n)*C0 assert rsolve(f, y(n), {y(0): 0, y(1): 1}) == 2**(1 - n)*n def test_issue_18751(): r = Symbol('r', positive=True) theta = Symbol('theta', real=True) f = y(n) - 2 * r * cos(theta) * y(n - 1) + r**2 * y(n - 2) assert rsolve(f, y(n)) == \ C0*(r*(cos(theta) - I*Abs(sin(theta))))**n + C1*(r*(cos(theta) + I*Abs(sin(theta))))**n def test_constant_naming(): #issue 8697 assert rsolve(y(n+3) - y(n+2) - y(n+1) + y(n), y(n)) == (-1)**n*C1 + C0 + C2*n assert rsolve(y(n+3)+3*y(n+2)+3*y(n+1)+y(n), y(n)).expand() == (-1)**n*C0 - (-1)**n*C1*n - (-1)**n*C2*n**2 assert rsolve(y(n) - 2*y(n - 3) + 5*y(n - 2) - 4*y(n - 1),y(n),[1,3,8]) == 3*2**n - n - 2 #issue 19630 assert rsolve(y(n+3) - 3*y(n+1) + 2*y(n), y(n), {y(1):0, y(2):8, y(3):-2}) == (-2)**n + 2*n @slow def test_issue_15751(): f = y(n) + 21*y(n + 1) - 273*y(n + 2) - 1092*y(n + 3) + 1820*y(n + 4) + 1092*y(n + 5) - 273*y(n + 6) - 21*y(n + 7) + y(n + 8) assert rsolve(f, y(n)) is not None def test_issue_17990(): f = -10*y(n) + 4*y(n + 1) + 6*y(n + 2) + 46*y(n + 3) sol = rsolve(f, y(n)) expected = C0*((86*18**(S(1)/3)/69 + (-12 + (-1 + sqrt(3)*I)*(290412 + 3036*sqrt(9165))**(S(1)/3))*(1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))** (S(1)/3)/276)/((1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3)) )**n + C1*((86*18**(S(1)/3)/69 + (-12 + (-1 - sqrt(3)*I)*(290412 + 3036 *sqrt(9165))**(S(1)/3))*(1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))** (S(1)/3)/276)/((1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3)) )**n + C2*(-43*18**(S(1)/3)/(69*(24201 + 253*sqrt(9165))**(S(1)/3)) - S(1)/23 + (290412 + 3036*sqrt(9165))**(S(1)/3)/138)**n assert sol == expected e = sol.subs({C0: 1, C1: 1, C2: 1, n: 1}).evalf() assert abs(e + 0.130434782608696) < 1e-13 def test_issue_8697(): a = Function('a') eq = a(n + 3) - a(n + 2) - a(n + 1) + a(n) assert rsolve(eq, a(n)) == (-1)**n*C1 + C0 + C2*n eq2 = a(n + 3) + 3*a(n + 2) + 3*a(n + 1) + a(n) assert (rsolve(eq2, a(n)) == (-1)**n*C0 + (-1)**(n + 1)*C1*n + (-1)**(n + 1)*C2*n**2) assert rsolve(a(n) - 2*a(n - 3) + 5*a(n - 2) - 4*a(n - 1), a(n), {a(0): 1, a(1): 3, a(2): 8}) == 3*2**n - n - 2 # From issue thread (but fixed by https://github.com/diofant/diofant/commit/da9789c6cd7d0c2ceeea19fbf59645987125b289): assert rsolve(a(n) - 2*a(n - 1) - n, a(n), {a(0): 1}) == 3*2**n - n - 2 def test_diofantissue_294(): f = y(n) - y(n - 1) - 2*y(n - 2) - 2*n assert rsolve(f, y(n)) == (-1)**n*C0 + 2**n*C1 - n - Rational(5, 2) # issue sympy/sympy#11261 assert rsolve(f, y(n), {y(0): -1, y(1): 1}) == (-(-1)**n/2 + 2*2**n - n - Rational(5, 2)) # issue sympy/sympy#7055 assert rsolve(-2*y(n) + y(n + 1) + n - 1, y(n)) == 2**n*C0 + n def test_issue_15553(): f = Function("f") assert rsolve(Eq(f(n), 2*f(n - 1) + n), f(n)) == 2**n*C0 - n - 2 assert rsolve(Eq(f(n + 1), 2*f(n) + n**2 + 1), f(n)) == 2**n*C0 - n**2 - 2*n - 4 assert rsolve(Eq(f(n + 1), 2*f(n) + n**2 + 1), f(n), {f(1): 0}) == 7*2**n/2 - n**2 - 2*n - 4 assert rsolve(Eq(f(n), 2*f(n - 1) + 3*n**2), f(n)) == 2**n*C0 - 3*n**2 - 12*n - 18 assert rsolve(Eq(f(n), 2*f(n - 1) + n**2), f(n)) == 2**n*C0 - n**2 - 4*n - 6 assert rsolve(Eq(f(n), 2*f(n - 1) + n), f(n), {f(0): 1}) == 3*2**n - n - 2