from sympy.unify.rewrite import rewriterule from sympy.core.basic import Basic from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.trigonometric import sin from sympy.abc import x, y from sympy.strategies.rl import rebuild from sympy.assumptions import Q p, q = Symbol('p'), Symbol('q') def test_simple(): rl = rewriterule(Basic(p, S(1)), Basic(p, S(2)), variables=(p,)) assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] p1 = p**2 p2 = p**3 rl = rewriterule(p1, p2, variables=(p,)) expr = x**2 assert list(rl(expr)) == [x**3] def test_simple_variables(): rl = rewriterule(Basic(x, S(1)), Basic(x, S(2)), variables=(x,)) assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] rl = rewriterule(x**2, x**3, variables=(x,)) assert list(rl(y**2)) == [y**3] def test_moderate(): p1 = p**2 + q**3 p2 = (p*q)**4 rl = rewriterule(p1, p2, (p, q)) expr = x**2 + y**3 assert list(rl(expr)) == [(x*y)**4] def test_sincos(): p1 = sin(p)**2 + sin(p)**2 p2 = 1 rl = rewriterule(p1, p2, (p, q)) assert list(rl(sin(x)**2 + sin(x)**2)) == [1] assert list(rl(sin(y)**2 + sin(y)**2)) == [1] def test_Exprs_ok(): rl = rewriterule(p+q, q+p, (p, q)) next(rl(x+y)).is_commutative str(next(rl(x+y))) def test_condition_simple(): rl = rewriterule(x, x+1, [x], lambda x: x < 10) assert not list(rl(S(15))) assert rebuild(next(rl(S(5)))) == 6 def test_condition_multiple(): rl = rewriterule(x + y, x**y, [x,y], lambda x, y: x.is_integer) a = Symbol('a') b = Symbol('b', integer=True) expr = a + b assert list(rl(expr)) == [b**a] c = Symbol('c', integer=True) d = Symbol('d', integer=True) assert set(rl(c + d)) == {c**d, d**c} def test_assumptions(): rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x)) a, b = map(Symbol, 'ab') expr = a + b assert list(rl(expr, Q.integer(b))) == [b**a]