"""Global configuration state and functions for management""" import os import threading from contextlib import contextmanager as contextmanager _global_config = { "assume_finite": bool(os.environ.get("SKLEARN_ASSUME_FINITE", False)), "working_memory": int(os.environ.get("SKLEARN_WORKING_MEMORY", 1024)), "print_changed_only": True, "display": "diagram", "pairwise_dist_chunk_size": int( os.environ.get("SKLEARN_PAIRWISE_DIST_CHUNK_SIZE", 256) ), "enable_cython_pairwise_dist": True, "array_api_dispatch": False, "transform_output": "default", "enable_metadata_routing": False, "skip_parameter_validation": False, } _threadlocal = threading.local() def _get_threadlocal_config(): """Get a threadlocal **mutable** configuration. If the configuration does not exist, copy the default global configuration.""" if not hasattr(_threadlocal, "global_config"): _threadlocal.global_config = _global_config.copy() return _threadlocal.global_config def get_config(): """Retrieve current values for configuration set by :func:`set_config`. Returns ------- config : dict Keys are parameter names that can be passed to :func:`set_config`. See Also -------- config_context : Context manager for global scikit-learn configuration. set_config : Set global scikit-learn configuration. Examples -------- >>> import sklearn >>> config = sklearn.get_config() >>> config.keys() dict_keys([...]) """ # Return a copy of the threadlocal configuration so that users will # not be able to modify the configuration with the returned dict. return _get_threadlocal_config().copy() def set_config( assume_finite=None, working_memory=None, print_changed_only=None, display=None, pairwise_dist_chunk_size=None, enable_cython_pairwise_dist=None, array_api_dispatch=None, transform_output=None, enable_metadata_routing=None, skip_parameter_validation=None, ): """Set global scikit-learn configuration. .. versionadded:: 0.19 Parameters ---------- assume_finite : bool, default=None If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. Global default: False. .. versionadded:: 0.19 working_memory : int, default=None If set, scikit-learn will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. Global default: 1024. .. versionadded:: 0.20 print_changed_only : bool, default=None If True, only the parameters that were set to non-default values will be printed when printing an estimator. For example, ``print(SVC())`` while True will only print 'SVC()' while the default behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters. .. versionadded:: 0.21 display : {'text', 'diagram'}, default=None If 'diagram', estimators will be displayed as a diagram in a Jupyter lab or notebook context. If 'text', estimators will be displayed as text. Default is 'diagram'. .. versionadded:: 0.23 pairwise_dist_chunk_size : int, default=None The number of row vectors per chunk for the accelerated pairwise- distances reduction backend. Default is 256 (suitable for most of modern laptops' caches and architectures). Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 enable_cython_pairwise_dist : bool, default=None Use the accelerated pairwise-distances reduction backend when possible. Global default: True. Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 array_api_dispatch : bool, default=None Use Array API dispatching when inputs follow the Array API standard. Default is False. See the :ref:`User Guide ` for more details. .. versionadded:: 1.2 transform_output : str, default=None Configure output of `transform` and `fit_transform`. See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` for an example on how to use the API. - `"default"`: Default output format of a transformer - `"pandas"`: DataFrame output - `"polars"`: Polars output - `None`: Transform configuration is unchanged .. versionadded:: 1.2 .. versionadded:: 1.4 `"polars"` option was added. enable_metadata_routing : bool, default=None Enable metadata routing. By default this feature is disabled. Refer to :ref:`metadata routing user guide ` for more details. - `True`: Metadata routing is enabled - `False`: Metadata routing is disabled, use the old syntax. - `None`: Configuration is unchanged .. versionadded:: 1.3 skip_parameter_validation : bool, default=None If `True`, disable the validation of the hyper-parameters' types and values in the fit method of estimators and for arguments passed to public helper functions. It can save time in some situations but can lead to low level crashes and exceptions with confusing error messages. Note that for data parameters, such as `X` and `y`, only type validation is skipped but validation with `check_array` will continue to run. .. versionadded:: 1.3 See Also -------- config_context : Context manager for global scikit-learn configuration. get_config : Retrieve current values of the global configuration. Examples -------- >>> from sklearn import set_config >>> set_config(display='diagram') # doctest: +SKIP """ local_config = _get_threadlocal_config() if assume_finite is not None: local_config["assume_finite"] = assume_finite if working_memory is not None: local_config["working_memory"] = working_memory if print_changed_only is not None: local_config["print_changed_only"] = print_changed_only if display is not None: local_config["display"] = display if pairwise_dist_chunk_size is not None: local_config["pairwise_dist_chunk_size"] = pairwise_dist_chunk_size if enable_cython_pairwise_dist is not None: local_config["enable_cython_pairwise_dist"] = enable_cython_pairwise_dist if array_api_dispatch is not None: from .utils._array_api import _check_array_api_dispatch _check_array_api_dispatch(array_api_dispatch) local_config["array_api_dispatch"] = array_api_dispatch if transform_output is not None: local_config["transform_output"] = transform_output if enable_metadata_routing is not None: local_config["enable_metadata_routing"] = enable_metadata_routing if skip_parameter_validation is not None: local_config["skip_parameter_validation"] = skip_parameter_validation @contextmanager def config_context( *, assume_finite=None, working_memory=None, print_changed_only=None, display=None, pairwise_dist_chunk_size=None, enable_cython_pairwise_dist=None, array_api_dispatch=None, transform_output=None, enable_metadata_routing=None, skip_parameter_validation=None, ): """Context manager for global scikit-learn configuration. Parameters ---------- assume_finite : bool, default=None If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. If None, the existing value won't change. The default value is False. working_memory : int, default=None If set, scikit-learn will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. If None, the existing value won't change. The default value is 1024. print_changed_only : bool, default=None If True, only the parameters that were set to non-default values will be printed when printing an estimator. For example, ``print(SVC())`` while True will only print 'SVC()', but would print 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters when False. If None, the existing value won't change. The default value is True. .. versionchanged:: 0.23 Default changed from False to True. display : {'text', 'diagram'}, default=None If 'diagram', estimators will be displayed as a diagram in a Jupyter lab or notebook context. If 'text', estimators will be displayed as text. If None, the existing value won't change. The default value is 'diagram'. .. versionadded:: 0.23 pairwise_dist_chunk_size : int, default=None The number of row vectors per chunk for the accelerated pairwise- distances reduction backend. Default is 256 (suitable for most of modern laptops' caches and architectures). Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 enable_cython_pairwise_dist : bool, default=None Use the accelerated pairwise-distances reduction backend when possible. Global default: True. Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 array_api_dispatch : bool, default=None Use Array API dispatching when inputs follow the Array API standard. Default is False. See the :ref:`User Guide ` for more details. .. versionadded:: 1.2 transform_output : str, default=None Configure output of `transform` and `fit_transform`. See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` for an example on how to use the API. - `"default"`: Default output format of a transformer - `"pandas"`: DataFrame output - `"polars"`: Polars output - `None`: Transform configuration is unchanged .. versionadded:: 1.2 .. versionadded:: 1.4 `"polars"` option was added. enable_metadata_routing : bool, default=None Enable metadata routing. By default this feature is disabled. Refer to :ref:`metadata routing user guide ` for more details. - `True`: Metadata routing is enabled - `False`: Metadata routing is disabled, use the old syntax. - `None`: Configuration is unchanged .. versionadded:: 1.3 skip_parameter_validation : bool, default=None If `True`, disable the validation of the hyper-parameters' types and values in the fit method of estimators and for arguments passed to public helper functions. It can save time in some situations but can lead to low level crashes and exceptions with confusing error messages. Note that for data parameters, such as `X` and `y`, only type validation is skipped but validation with `check_array` will continue to run. .. versionadded:: 1.3 Yields ------ None. See Also -------- set_config : Set global scikit-learn configuration. get_config : Retrieve current values of the global configuration. Notes ----- All settings, not just those presently modified, will be returned to their previous values when the context manager is exited. Examples -------- >>> import sklearn >>> from sklearn.utils.validation import assert_all_finite >>> with sklearn.config_context(assume_finite=True): ... assert_all_finite([float('nan')]) >>> with sklearn.config_context(assume_finite=True): ... with sklearn.config_context(assume_finite=False): ... assert_all_finite([float('nan')]) Traceback (most recent call last): ... ValueError: Input contains NaN... """ old_config = get_config() set_config( assume_finite=assume_finite, working_memory=working_memory, print_changed_only=print_changed_only, display=display, pairwise_dist_chunk_size=pairwise_dist_chunk_size, enable_cython_pairwise_dist=enable_cython_pairwise_dist, array_api_dispatch=array_api_dispatch, transform_output=transform_output, enable_metadata_routing=enable_metadata_routing, skip_parameter_validation=skip_parameter_validation, ) try: yield finally: set_config(**old_config)