"""Testing for the VotingClassifier and VotingRegressor""" import re import numpy as np import pytest from sklearn import datasets from sklearn.base import BaseEstimator, ClassifierMixin, clone from sklearn.datasets import make_multilabel_classification from sklearn.dummy import DummyRegressor from sklearn.ensemble import ( RandomForestClassifier, RandomForestRegressor, VotingClassifier, VotingRegressor, ) from sklearn.exceptions import NotFittedError from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.tests.metadata_routing_common import ( ConsumingClassifier, ConsumingRegressor, _Registry, check_recorded_metadata, ) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils._testing import ( assert_almost_equal, assert_array_almost_equal, assert_array_equal, ignore_warnings, ) # Load datasets iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target # Scaled to solve ConvergenceWarning throw by Logistic Regression X_scaled = StandardScaler().fit_transform(X) X_r, y_r = datasets.load_diabetes(return_X_y=True) @pytest.mark.parametrize( "params, err_msg", [ ( {"estimators": []}, "Invalid 'estimators' attribute, 'estimators' should be a non-empty list", ), ( {"estimators": [("lr", LogisticRegression())], "weights": [1, 2]}, "Number of `estimators` and weights must be equal", ), ], ) def test_voting_classifier_estimator_init(params, err_msg): ensemble = VotingClassifier(**params) with pytest.raises(ValueError, match=err_msg): ensemble.fit(X, y) def test_predictproba_hardvoting(): eclf = VotingClassifier( estimators=[("lr1", LogisticRegression()), ("lr2", LogisticRegression())], voting="hard", ) inner_msg = "predict_proba is not available when voting='hard'" outer_msg = "'VotingClassifier' has no attribute 'predict_proba'" with pytest.raises(AttributeError, match=outer_msg) as exec_info: eclf.predict_proba assert isinstance(exec_info.value.__cause__, AttributeError) assert inner_msg in str(exec_info.value.__cause__) assert not hasattr(eclf, "predict_proba") eclf.fit(X_scaled, y) assert not hasattr(eclf, "predict_proba") def test_notfitted(): eclf = VotingClassifier( estimators=[("lr1", LogisticRegression()), ("lr2", LogisticRegression())], voting="soft", ) ereg = VotingRegressor([("dr", DummyRegressor())]) msg = ( "This %s instance is not fitted yet. Call 'fit'" " with appropriate arguments before using this estimator." ) with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): eclf.predict(X) with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): eclf.predict_proba(X) with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): eclf.transform(X) with pytest.raises(NotFittedError, match=msg % "VotingRegressor"): ereg.predict(X_r) with pytest.raises(NotFittedError, match=msg % "VotingRegressor"): ereg.transform(X_r) def test_majority_label_iris(global_random_seed): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(solver="liblinear", random_state=global_random_seed) clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) clf3 = GaussianNB() eclf = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard" ) scores = cross_val_score(eclf, X, y, scoring="accuracy") assert scores.mean() >= 0.9 def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123, solver="liblinear") clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[("lr", clf1), ("rf", clf2)], voting="hard") assert clf1.fit(X, y).predict(X)[73] == 2 assert clf2.fit(X, y).predict(X)[73] == 1 assert eclf.fit(X, y).predict(X)[73] == 1 def test_weights_iris(global_random_seed): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=global_random_seed) clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) clf3 = GaussianNB() eclf = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", weights=[1, 2, 10], ) scores = cross_val_score(eclf, X_scaled, y, scoring="accuracy") assert scores.mean() >= 0.9 def test_weights_regressor(): """Check weighted average regression prediction on diabetes dataset.""" reg1 = DummyRegressor(strategy="mean") reg2 = DummyRegressor(strategy="median") reg3 = DummyRegressor(strategy="quantile", quantile=0.2) ereg = VotingRegressor( [("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 2, 10] ) X_r_train, X_r_test, y_r_train, y_r_test = train_test_split( X_r, y_r, test_size=0.25 ) reg1_pred = reg1.fit(X_r_train, y_r_train).predict(X_r_test) reg2_pred = reg2.fit(X_r_train, y_r_train).predict(X_r_test) reg3_pred = reg3.fit(X_r_train, y_r_train).predict(X_r_test) ereg_pred = ereg.fit(X_r_train, y_r_train).predict(X_r_test) avg = np.average( np.asarray([reg1_pred, reg2_pred, reg3_pred]), axis=0, weights=[1, 2, 10] ) assert_almost_equal(ereg_pred, avg, decimal=2) ereg_weights_none = VotingRegressor( [("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=None ) ereg_weights_equal = VotingRegressor( [("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 1, 1] ) ereg_weights_none.fit(X_r_train, y_r_train) ereg_weights_equal.fit(X_r_train, y_r_train) ereg_none_pred = ereg_weights_none.predict(X_r_test) ereg_equal_pred = ereg_weights_equal.predict(X_r_test) assert_almost_equal(ereg_none_pred, ereg_equal_pred, decimal=2) def test_predict_on_toy_problem(global_random_seed): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=global_random_seed) clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) clf3 = GaussianNB() X = np.array( [[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]] ) y = np.array([1, 1, 1, 2, 2, 2]) assert_array_equal(clf1.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) assert_array_equal(clf2.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) assert_array_equal(clf3.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) eclf = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard", weights=[1, 1, 1], ) assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) eclf = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", weights=[1, 1, 1], ) assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array( [ [0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226], ] ) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array( [[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0.0, 1.0], [0.0, 1.0]] ) t00 = (2 * clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2 * clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2 * clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2 * clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", weights=[2, 1, 1], ) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) inner_msg = "predict_proba is not available when voting='hard'" outer_msg = "'VotingClassifier' has no attribute 'predict_proba'" with pytest.raises(AttributeError, match=outer_msg) as exec_info: eclf = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard" ) eclf.fit(X, y).predict_proba(X) assert isinstance(exec_info.value.__cause__, AttributeError) assert inner_msg in str(exec_info.value.__cause__) def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification( n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123 ) clf = OneVsRestClassifier(SVC(kernel="linear")) eclf = VotingClassifier(estimators=[("ovr", clf)], voting="hard") try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1, n_estimators=3) clf3 = GaussianNB() eclf = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft" ) params = { "lr__C": [1.0, 100.0], "voting": ["soft", "hard"], "weights": [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]], } grid = GridSearchCV(estimator=eclf, param_grid=params, cv=2) grid.fit(X_scaled, y) def test_parallel_fit(global_random_seed): """Check parallel backend of VotingClassifier on toy dataset.""" clf1 = LogisticRegression(random_state=global_random_seed) clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf1 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=1 ).fit(X, y) eclf2 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=2 ).fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) @ignore_warnings(category=FutureWarning) def test_sample_weight(global_random_seed): """Tests sample_weight parameter of VotingClassifier""" clf1 = LogisticRegression(random_state=global_random_seed) clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) clf3 = SVC(probability=True, random_state=global_random_seed) eclf1 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("svc", clf3)], voting="soft" ).fit(X_scaled, y, sample_weight=np.ones((len(y),))) eclf2 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("svc", clf3)], voting="soft" ).fit(X_scaled, y) assert_array_equal(eclf1.predict(X_scaled), eclf2.predict(X_scaled)) assert_array_almost_equal( eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) ) sample_weight = np.random.RandomState(global_random_seed).uniform(size=(len(y),)) eclf3 = VotingClassifier(estimators=[("lr", clf1)], voting="soft") eclf3.fit(X_scaled, y, sample_weight) clf1.fit(X_scaled, y, sample_weight) assert_array_equal(eclf3.predict(X_scaled), clf1.predict(X_scaled)) assert_array_almost_equal( eclf3.predict_proba(X_scaled), clf1.predict_proba(X_scaled) ) # check that an error is raised and indicative if sample_weight is not # supported. clf4 = KNeighborsClassifier() eclf3 = VotingClassifier( estimators=[("lr", clf1), ("svc", clf3), ("knn", clf4)], voting="soft" ) msg = "Underlying estimator KNeighborsClassifier does not support sample weights." with pytest.raises(TypeError, match=msg): eclf3.fit(X_scaled, y, sample_weight) # check that _fit_single_estimator will raise the right error # it should raise the original error if this is not linked to sample_weight class ClassifierErrorFit(ClassifierMixin, BaseEstimator): def fit(self, X_scaled, y, sample_weight): raise TypeError("Error unrelated to sample_weight.") clf = ClassifierErrorFit() with pytest.raises(TypeError, match="Error unrelated to sample_weight"): clf.fit(X_scaled, y, sample_weight=sample_weight) def test_sample_weight_kwargs(): """Check that VotingClassifier passes sample_weight as kwargs""" class MockClassifier(ClassifierMixin, BaseEstimator): """Mock Classifier to check that sample_weight is received as kwargs""" def fit(self, X, y, *args, **sample_weight): assert "sample_weight" in sample_weight clf = MockClassifier() eclf = VotingClassifier(estimators=[("mock", clf)], voting="soft") # Should not raise an error. eclf.fit(X, y, sample_weight=np.ones((len(y),))) def test_voting_classifier_set_params(global_random_seed): # check equivalence in the output when setting underlying estimators clf1 = LogisticRegression(random_state=global_random_seed) clf2 = RandomForestClassifier( n_estimators=10, random_state=global_random_seed, max_depth=None ) clf3 = GaussianNB() eclf1 = VotingClassifier( [("lr", clf1), ("rf", clf2)], voting="soft", weights=[1, 2] ).fit(X_scaled, y) eclf2 = VotingClassifier( [("lr", clf1), ("nb", clf3)], voting="soft", weights=[1, 2] ) eclf2.set_params(nb=clf2).fit(X_scaled, y) assert_array_equal(eclf1.predict(X_scaled), eclf2.predict(X_scaled)) assert_array_almost_equal( eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) ) assert eclf2.estimators[0][1].get_params() == clf1.get_params() assert eclf2.estimators[1][1].get_params() == clf2.get_params() def test_set_estimator_drop(): # VotingClassifier set_params should be able to set estimators as drop # Test predict clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(n_estimators=10, random_state=123) clf3 = GaussianNB() eclf1 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("nb", clf3)], voting="hard", weights=[1, 0, 0.5], ).fit(X, y) eclf2 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("nb", clf3)], voting="hard", weights=[1, 1, 0.5], ) eclf2.set_params(rf="drop").fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert dict(eclf2.estimators)["rf"] == "drop" assert len(eclf2.estimators_) == 2 assert all( isinstance(est, (LogisticRegression, GaussianNB)) for est in eclf2.estimators_ ) assert eclf2.get_params()["rf"] == "drop" eclf1.set_params(voting="soft").fit(X, y) eclf2.set_params(voting="soft").fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) msg = "All estimators are dropped. At least one is required" with pytest.raises(ValueError, match=msg): eclf2.set_params(lr="drop", rf="drop", nb="drop").fit(X, y) # Test soft voting transform X1 = np.array([[1], [2]]) y1 = np.array([1, 2]) eclf1 = VotingClassifier( estimators=[("rf", clf2), ("nb", clf3)], voting="soft", weights=[0, 0.5], flatten_transform=False, ).fit(X1, y1) eclf2 = VotingClassifier( estimators=[("rf", clf2), ("nb", clf3)], voting="soft", weights=[1, 0.5], flatten_transform=False, ) eclf2.set_params(rf="drop").fit(X1, y1) assert_array_almost_equal( eclf1.transform(X1), np.array([[[0.7, 0.3], [0.3, 0.7]], [[1.0, 0.0], [0.0, 1.0]]]), ) assert_array_almost_equal(eclf2.transform(X1), np.array([[[1.0, 0.0], [0.0, 1.0]]])) eclf1.set_params(voting="hard") eclf2.set_params(voting="hard") assert_array_equal(eclf1.transform(X1), np.array([[0, 0], [1, 1]])) assert_array_equal(eclf2.transform(X1), np.array([[0], [1]])) def test_estimator_weights_format(global_random_seed): # Test estimator weights inputs as list and array clf1 = LogisticRegression(random_state=global_random_seed) clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) eclf1 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2)], weights=[1, 2], voting="soft" ) eclf2 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2)], weights=np.array((1, 2)), voting="soft" ) eclf1.fit(X_scaled, y) eclf2.fit(X_scaled, y) assert_array_almost_equal( eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) ) def test_transform(global_random_seed): """Check transform method of VotingClassifier on toy dataset.""" clf1 = LogisticRegression(random_state=global_random_seed) clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf1 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft" ).fit(X, y) eclf2 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", flatten_transform=True, ).fit(X, y) eclf3 = VotingClassifier( estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", flatten_transform=False, ).fit(X, y) assert_array_equal(eclf1.transform(X).shape, (4, 6)) assert_array_equal(eclf2.transform(X).shape, (4, 6)) assert_array_equal(eclf3.transform(X).shape, (3, 4, 2)) assert_array_almost_equal(eclf1.transform(X), eclf2.transform(X)) assert_array_almost_equal( eclf3.transform(X).swapaxes(0, 1).reshape((4, 6)), eclf2.transform(X) ) @pytest.mark.parametrize( "X, y, voter", [ ( X, y, VotingClassifier( [ ("lr", LogisticRegression()), ("rf", RandomForestClassifier(n_estimators=5)), ] ), ), ( X_r, y_r, VotingRegressor( [ ("lr", LinearRegression()), ("rf", RandomForestRegressor(n_estimators=5)), ] ), ), ], ) def test_none_estimator_with_weights(X, y, voter): # check that an estimator can be set to 'drop' and passing some weight # regression test for # https://github.com/scikit-learn/scikit-learn/issues/13777 voter = clone(voter) # Scaled to solve ConvergenceWarning throw by Logistic Regression X_scaled = StandardScaler().fit_transform(X) voter.fit(X_scaled, y, sample_weight=np.ones(y.shape)) voter.set_params(lr="drop") voter.fit(X_scaled, y, sample_weight=np.ones(y.shape)) y_pred = voter.predict(X_scaled) assert y_pred.shape == y.shape @pytest.mark.parametrize( "est", [ VotingRegressor( estimators=[ ("lr", LinearRegression()), ("tree", DecisionTreeRegressor(random_state=0)), ] ), VotingClassifier( estimators=[ ("lr", LogisticRegression(random_state=0)), ("tree", DecisionTreeClassifier(random_state=0)), ] ), ], ids=["VotingRegressor", "VotingClassifier"], ) def test_n_features_in(est): X = [[1, 2], [3, 4], [5, 6]] y = [0, 1, 2] assert not hasattr(est, "n_features_in_") est.fit(X, y) assert est.n_features_in_ == 2 @pytest.mark.parametrize( "estimator", [ VotingRegressor( estimators=[ ("lr", LinearRegression()), ("rf", RandomForestRegressor(random_state=123)), ], verbose=True, ), VotingClassifier( estimators=[ ("lr", LogisticRegression(random_state=123)), ("rf", RandomForestClassifier(random_state=123)), ], verbose=True, ), ], ) def test_voting_verbose(estimator, capsys): X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) pattern = ( r"\[Voting\].*\(1 of 2\) Processing lr, total=.*\n" r"\[Voting\].*\(2 of 2\) Processing rf, total=.*\n$" ) estimator.fit(X, y) assert re.match(pattern, capsys.readouterr()[0]) def test_get_features_names_out_regressor(): """Check get_feature_names_out output for regressor.""" X = [[1, 2], [3, 4], [5, 6]] y = [0, 1, 2] voting = VotingRegressor( estimators=[ ("lr", LinearRegression()), ("tree", DecisionTreeRegressor(random_state=0)), ("ignore", "drop"), ] ) voting.fit(X, y) names_out = voting.get_feature_names_out() expected_names = ["votingregressor_lr", "votingregressor_tree"] assert_array_equal(names_out, expected_names) @pytest.mark.parametrize( "kwargs, expected_names", [ ( {"voting": "soft", "flatten_transform": True}, [ "votingclassifier_lr0", "votingclassifier_lr1", "votingclassifier_lr2", "votingclassifier_tree0", "votingclassifier_tree1", "votingclassifier_tree2", ], ), ({"voting": "hard"}, ["votingclassifier_lr", "votingclassifier_tree"]), ], ) def test_get_features_names_out_classifier(kwargs, expected_names): """Check get_feature_names_out for classifier for different settings.""" X = [[1, 2], [3, 4], [5, 6], [1, 1.2]] y = [0, 1, 2, 0] voting = VotingClassifier( estimators=[ ("lr", LogisticRegression(random_state=0)), ("tree", DecisionTreeClassifier(random_state=0)), ], **kwargs, ) voting.fit(X, y) X_trans = voting.transform(X) names_out = voting.get_feature_names_out() assert X_trans.shape[1] == len(expected_names) assert_array_equal(names_out, expected_names) def test_get_features_names_out_classifier_error(): """Check that error is raised when voting="soft" and flatten_transform=False.""" X = [[1, 2], [3, 4], [5, 6]] y = [0, 1, 2] voting = VotingClassifier( estimators=[ ("lr", LogisticRegression(random_state=0)), ("tree", DecisionTreeClassifier(random_state=0)), ], voting="soft", flatten_transform=False, ) voting.fit(X, y) msg = ( "get_feature_names_out is not supported when `voting='soft'` and " "`flatten_transform=False`" ) with pytest.raises(ValueError, match=msg): voting.get_feature_names_out() # Metadata Routing Tests # ====================== @pytest.mark.parametrize( "Estimator, Child", [(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], ) def test_routing_passed_metadata_not_supported(Estimator, Child): """Test that the right error message is raised when metadata is passed while not supported when `enable_metadata_routing=False`.""" X = np.array([[0, 1], [2, 2], [4, 6]]) y = [1, 2, 3] with pytest.raises( ValueError, match="is only supported if enable_metadata_routing=True" ): Estimator(["clf", Child()]).fit(X, y, sample_weight=[1, 1, 1], metadata="a") @pytest.mark.usefixtures("enable_slep006") @pytest.mark.parametrize( "Estimator, Child", [(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], ) def test_get_metadata_routing_without_fit(Estimator, Child): # Test that metadata_routing() doesn't raise when called before fit. est = Estimator([("sub_est", Child())]) est.get_metadata_routing() @pytest.mark.usefixtures("enable_slep006") @pytest.mark.parametrize( "Estimator, Child", [(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], ) @pytest.mark.parametrize("prop", ["sample_weight", "metadata"]) def test_metadata_routing_for_voting_estimators(Estimator, Child, prop): """Test that metadata is routed correctly for Voting*.""" X = np.array([[0, 1], [2, 2], [4, 6]]) y = [1, 2, 3] sample_weight, metadata = [1, 1, 1], "a" est = Estimator( [ ( "sub_est1", Child(registry=_Registry()).set_fit_request(**{prop: True}), ), ( "sub_est2", Child(registry=_Registry()).set_fit_request(**{prop: True}), ), ] ) est.fit(X, y, **{prop: sample_weight if prop == "sample_weight" else metadata}) for estimator in est.estimators: if prop == "sample_weight": kwargs = {prop: sample_weight} else: kwargs = {prop: metadata} # access sub-estimator in (name, est) with estimator[1] registry = estimator[1].registry assert len(registry) for sub_est in registry: check_recorded_metadata(obj=sub_est, method="fit", **kwargs) @pytest.mark.usefixtures("enable_slep006") @pytest.mark.parametrize( "Estimator, Child", [(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], ) def test_metadata_routing_error_for_voting_estimators(Estimator, Child): """Test that the right error is raised when metadata is not requested.""" X = np.array([[0, 1], [2, 2], [4, 6]]) y = [1, 2, 3] sample_weight, metadata = [1, 1, 1], "a" est = Estimator([("sub_est", Child())]) error_message = ( "[sample_weight, metadata] are passed but are not explicitly set as requested" f" or not requested for {Child.__name__}.fit" ) with pytest.raises(ValueError, match=re.escape(error_message)): est.fit(X, y, sample_weight=sample_weight, metadata=metadata) # End of Metadata Routing Tests # =============================