from sympy.core.numbers import (I, Rational, oo) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.calculus.singularities import ( singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic ) from sympy.sets import Interval, FiniteSet from sympy.testing.pytest import raises from sympy.abc import x, y def test_singularities(): x = Symbol('x') assert singularities(x**2, x) == S.EmptySet assert singularities(x/(x**2 + 3*x + 2), x) == FiniteSet(-2, -1) assert singularities(1/(x**2 + 1), x) == FiniteSet(I, -I) assert singularities(x/(x**3 + 1), x) == \ FiniteSet(-1, (1 - sqrt(3) * I) / 2, (1 + sqrt(3) * I) / 2) assert singularities(1/(y**2 + 2*I*y + 1), y) == \ FiniteSet(-I + sqrt(2)*I, -I - sqrt(2)*I) x = Symbol('x', real=True) assert singularities(1/(x**2 + 1), x) == S.EmptySet assert singularities(exp(1/x), x, S.Reals) == FiniteSet(0) assert singularities(exp(1/x), x, Interval(1, 2)) == S.EmptySet assert singularities(log((x - 2)**2), x, Interval(1, 3)) == FiniteSet(2) raises(NotImplementedError, lambda: singularities(x**-oo, x)) def test_is_increasing(): """Test whether is_increasing returns correct value.""" a = Symbol('a', negative=True) assert is_increasing(x**3 - 3*x**2 + 4*x, S.Reals) assert is_increasing(-x**2, Interval(-oo, 0)) assert not is_increasing(-x**2, Interval(0, oo)) assert not is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) assert is_increasing(x**2 + y, Interval(1, oo), x) assert is_increasing(-x**2*a, Interval(1, oo), x) assert is_increasing(1) assert is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) is False def test_is_strictly_increasing(): """Test whether is_strictly_increasing returns correct value.""" assert is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2)) assert is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo)) assert not is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) assert not is_strictly_increasing(-x**2, Interval(0, oo)) assert not is_strictly_decreasing(1) assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False def test_is_decreasing(): """Test whether is_decreasing returns correct value.""" b = Symbol('b', positive=True) assert is_decreasing(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3)) assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert not is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2))) assert not is_decreasing(-x**2, Interval(-oo, 0)) assert not is_decreasing(-x**2*b, Interval(-oo, 0), x) def test_is_strictly_decreasing(): """Test whether is_strictly_decreasing returns correct value.""" assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert not is_strictly_decreasing( 1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2))) assert not is_strictly_decreasing(-x**2, Interval(-oo, 0)) assert not is_strictly_decreasing(1) assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3)) assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) def test_is_monotonic(): """Test whether is_monotonic returns correct value.""" assert is_monotonic(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3)) assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals) assert not is_monotonic(-x**2, S.Reals) assert is_monotonic(x**2 + y + 1, Interval(1, 2), x) raises(NotImplementedError, lambda: is_monotonic(x**2 + y + 1)) def test_issue_23401(): x = Symbol('x') expr = (x + 1)/(-1.0e-3*x**2 + 0.1*x + 0.1) assert is_increasing(expr, Interval(1,2), x)