import os from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.external import import_module from sympy.testing.pytest import skip from sympy.parsing.autolev import parse_autolev antlr4 = import_module("antlr4") if not antlr4: disabled = True FILE_DIR = os.path.dirname( os.path.dirname(os.path.abspath(os.path.realpath(__file__)))) def _test_examples(in_filename, out_filename, test_name=""): in_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', in_filename) correct_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', out_filename) with open(in_file_path) as f: generated_code = parse_autolev(f, include_numeric=True) with open(correct_file_path) as f: for idx, line1 in enumerate(f): if line1.startswith("#"): break try: line2 = generated_code.split('\n')[idx] assert line1.rstrip() == line2.rstrip() except Exception: msg = 'mismatch in ' + test_name + ' in line no: {0}' raise AssertionError(msg.format(idx+1)) def test_rule_tests(): l = ["ruletest1", "ruletest2", "ruletest3", "ruletest4", "ruletest5", "ruletest6", "ruletest7", "ruletest8", "ruletest9", "ruletest10", "ruletest11", "ruletest12"] for i in l: in_filepath = i + ".al" out_filepath = i + ".py" _test_examples(in_filepath, out_filepath, i) def test_pydy_examples(): l = ["mass_spring_damper", "chaos_pendulum", "double_pendulum", "non_min_pendulum"] for i in l: in_filepath = os.path.join("pydy-example-repo", i + ".al") out_filepath = os.path.join("pydy-example-repo", i + ".py") _test_examples(in_filepath, out_filepath, i) def test_autolev_tutorial(): dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', 'autolev-tutorial') if os.path.isdir(dir_path): l = ["tutor1", "tutor2", "tutor3", "tutor4", "tutor5", "tutor6", "tutor7"] for i in l: in_filepath = os.path.join("autolev-tutorial", i + ".al") out_filepath = os.path.join("autolev-tutorial", i + ".py") _test_examples(in_filepath, out_filepath, i) def test_dynamics_online(): dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', 'dynamics-online') if os.path.isdir(dir_path): ch1 = ["1-4", "1-5", "1-6", "1-7", "1-8", "1-9_1", "1-9_2", "1-9_3"] ch2 = ["2-1", "2-2", "2-3", "2-4", "2-5", "2-6", "2-7", "2-8", "2-9", "circular"] ch3 = ["3-1_1", "3-1_2", "3-2_1", "3-2_2", "3-2_3", "3-2_4", "3-2_5", "3-3"] ch4 = ["4-1_1", "4-2_1", "4-4_1", "4-4_2", "4-5_1", "4-5_2"] chapters = [(ch1, "ch1"), (ch2, "ch2"), (ch3, "ch3"), (ch4, "ch4")] for ch, name in chapters: for i in ch: in_filepath = os.path.join("dynamics-online", name, i + ".al") out_filepath = os.path.join("dynamics-online", name, i + ".py") _test_examples(in_filepath, out_filepath, i) def test_output_01(): """Autolev example calculates the position, velocity, and acceleration of a point and expresses in a single reference frame:: (1) FRAMES C,D,F (2) VARIABLES FD'',DC'' (3) CONSTANTS R,L (4) POINTS O,E (5) SIMPROT(F,D,1,FD) -> (6) F_D = [1, 0, 0; 0, COS(FD), -SIN(FD); 0, SIN(FD), COS(FD)] (7) SIMPROT(D,C,2,DC) -> (8) D_C = [COS(DC), 0, SIN(DC); 0, 1, 0; -SIN(DC), 0, COS(DC)] (9) W_C_F> = EXPRESS(W_C_F>, F) -> (10) W_C_F> = FD'*F1> + COS(FD)*DC'*F2> + SIN(FD)*DC'*F3> (11) P_O_E>=R*D2>-L*C1> (12) P_O_E>=EXPRESS(P_O_E>, D) -> (13) P_O_E> = -L*COS(DC)*D1> + R*D2> + L*SIN(DC)*D3> (14) V_E_F>=EXPRESS(DT(P_O_E>,F),D) -> (15) V_E_F> = L*SIN(DC)*DC'*D1> - L*SIN(DC)*FD'*D2> + (R*FD'+L*COS(DC)*DC')*D3> (16) A_E_F>=EXPRESS(DT(V_E_F>,F),D) -> (17) A_E_F> = L*(COS(DC)*DC'^2+SIN(DC)*DC'')*D1> + (-R*FD'^2-2*L*COS(DC)*DC'*FD'-L*SIN(DC)*FD'')*D2> + (R*FD''+L*COS(DC)*DC''-L*SIN(DC)*DC'^2-L*SIN(DC)*FD'^2)*D3> """ if not antlr4: skip('Test skipped: antlr4 is not installed.') autolev_input = """\ FRAMES C,D,F VARIABLES FD'',DC'' CONSTANTS R,L POINTS O,E SIMPROT(F,D,1,FD) SIMPROT(D,C,2,DC) W_C_F>=EXPRESS(W_C_F>,F) P_O_E>=R*D2>-L*C1> P_O_E>=EXPRESS(P_O_E>,D) V_E_F>=EXPRESS(DT(P_O_E>,F),D) A_E_F>=EXPRESS(DT(V_E_F>,F),D)\ """ sympy_input = parse_autolev(autolev_input) g = {} l = {} exec(sympy_input, g, l) w_c_f = l['frame_c'].ang_vel_in(l['frame_f']) # P_O_E> means "the position of point E wrt to point O" p_o_e = l['point_e'].pos_from(l['point_o']) v_e_f = l['point_e'].vel(l['frame_f']) a_e_f = l['point_e'].acc(l['frame_f']) # NOTE : The Autolev outputs above were manually transformed into # equivalent SymPy physics vector expressions. Would be nice to automate # this transformation. expected_w_c_f = (l['fd'].diff()*l['frame_f'].x + cos(l['fd'])*l['dc'].diff()*l['frame_f'].y + sin(l['fd'])*l['dc'].diff()*l['frame_f'].z) assert (w_c_f - expected_w_c_f).simplify() == 0 expected_p_o_e = (-l['l']*cos(l['dc'])*l['frame_d'].x + l['r']*l['frame_d'].y + l['l']*sin(l['dc'])*l['frame_d'].z) assert (p_o_e - expected_p_o_e).simplify() == 0 expected_v_e_f = (l['l']*sin(l['dc'])*l['dc'].diff()*l['frame_d'].x - l['l']*sin(l['dc'])*l['fd'].diff()*l['frame_d'].y + (l['r']*l['fd'].diff() + l['l']*cos(l['dc'])*l['dc'].diff())*l['frame_d'].z) assert (v_e_f - expected_v_e_f).simplify() == 0 expected_a_e_f = (l['l']*(cos(l['dc'])*l['dc'].diff()**2 + sin(l['dc'])*l['dc'].diff().diff())*l['frame_d'].x + (-l['r']*l['fd'].diff()**2 - 2*l['l']*cos(l['dc'])*l['dc'].diff()*l['fd'].diff() - l['l']*sin(l['dc'])*l['fd'].diff().diff())*l['frame_d'].y + (l['r']*l['fd'].diff().diff() + l['l']*cos(l['dc'])*l['dc'].diff().diff() - l['l']*sin(l['dc'])*l['dc'].diff()**2 - l['l']*sin(l['dc'])*l['fd'].diff()**2)*l['frame_d'].z) assert (a_e_f - expected_a_e_f).simplify() == 0