from itertools import zip_longest from sympy.utilities.enumerative import ( list_visitor, MultisetPartitionTraverser, multiset_partitions_taocp ) from sympy.utilities.iterables import _set_partitions # first some functions only useful as test scaffolding - these provide # straightforward, but slow reference implementations against which to # compare the real versions, and also a comparison to verify that # different versions are giving identical results. def part_range_filter(partition_iterator, lb, ub): """ Filters (on the number of parts) a multiset partition enumeration Arguments ========= lb, and ub are a range (in the Python slice sense) on the lpart variable returned from a multiset partition enumeration. Recall that lpart is 0-based (it points to the topmost part on the part stack), so if you want to return parts of sizes 2,3,4,5 you would use lb=1 and ub=5. """ for state in partition_iterator: f, lpart, pstack = state if lpart >= lb and lpart < ub: yield state def multiset_partitions_baseline(multiplicities, components): """Enumerates partitions of a multiset Parameters ========== multiplicities list of integer multiplicities of the components of the multiset. components the components (elements) themselves Returns ======= Set of partitions. Each partition is tuple of parts, and each part is a tuple of components (with repeats to indicate multiplicity) Notes ===== Multiset partitions can be created as equivalence classes of set partitions, and this function does just that. This approach is slow and memory intensive compared to the more advanced algorithms available, but the code is simple and easy to understand. Hence this routine is strictly for testing -- to provide a straightforward baseline against which to regress the production versions. (This code is a simplified version of an earlier production implementation.) """ canon = [] # list of components with repeats for ct, elem in zip(multiplicities, components): canon.extend([elem]*ct) # accumulate the multiset partitions in a set to eliminate dups cache = set() n = len(canon) for nc, q in _set_partitions(n): rv = [[] for i in range(nc)] for i in range(n): rv[q[i]].append(canon[i]) canonical = tuple( sorted([tuple(p) for p in rv])) cache.add(canonical) return cache def compare_multiset_w_baseline(multiplicities): """ Enumerates the partitions of multiset with AOCP algorithm and baseline implementation, and compare the results. """ letters = "abcdefghijklmnopqrstuvwxyz" bl_partitions = multiset_partitions_baseline(multiplicities, letters) # The partitions returned by the different algorithms may have # their parts in different orders. Also, they generate partitions # in different orders. Hence the sorting, and set comparison. aocp_partitions = set() for state in multiset_partitions_taocp(multiplicities): p1 = tuple(sorted( [tuple(p) for p in list_visitor(state, letters)])) aocp_partitions.add(p1) assert bl_partitions == aocp_partitions def compare_multiset_states(s1, s2): """compare for equality two instances of multiset partition states This is useful for comparing different versions of the algorithm to verify correctness.""" # Comparison is physical, the only use of semantics is to ignore # trash off the top of the stack. f1, lpart1, pstack1 = s1 f2, lpart2, pstack2 = s2 if (lpart1 == lpart2) and (f1[0:lpart1+1] == f2[0:lpart2+1]): if pstack1[0:f1[lpart1+1]] == pstack2[0:f2[lpart2+1]]: return True return False def test_multiset_partitions_taocp(): """Compares the output of multiset_partitions_taocp with a baseline (set partition based) implementation.""" # Test cases should not be too large, since the baseline # implementation is fairly slow. multiplicities = [2,2] compare_multiset_w_baseline(multiplicities) multiplicities = [4,3,1] compare_multiset_w_baseline(multiplicities) def test_multiset_partitions_versions(): """Compares Knuth-based versions of multiset_partitions""" multiplicities = [5,2,2,1] m = MultisetPartitionTraverser() for s1, s2 in zip_longest(m.enum_all(multiplicities), multiset_partitions_taocp(multiplicities)): assert compare_multiset_states(s1, s2) def subrange_exercise(mult, lb, ub): """Compare filter-based and more optimized subrange implementations Helper for tests, called with both small and larger multisets. """ m = MultisetPartitionTraverser() assert m.count_partitions(mult) == \ m.count_partitions_slow(mult) # Note - multiple traversals from the same # MultisetPartitionTraverser object cannot execute at the same # time, hence make several instances here. ma = MultisetPartitionTraverser() mc = MultisetPartitionTraverser() md = MultisetPartitionTraverser() # Several paths to compute just the size two partitions a_it = ma.enum_range(mult, lb, ub) b_it = part_range_filter(multiset_partitions_taocp(mult), lb, ub) c_it = part_range_filter(mc.enum_small(mult, ub), lb, sum(mult)) d_it = part_range_filter(md.enum_large(mult, lb), 0, ub) for sa, sb, sc, sd in zip_longest(a_it, b_it, c_it, d_it): assert compare_multiset_states(sa, sb) assert compare_multiset_states(sa, sc) assert compare_multiset_states(sa, sd) def test_subrange(): # Quick, but doesn't hit some of the corner cases mult = [4,4,2,1] # mississippi lb = 1 ub = 2 subrange_exercise(mult, lb, ub) def test_subrange_large(): # takes a second or so, depending on cpu, Python version, etc. mult = [6,3,2,1] lb = 4 ub = 7 subrange_exercise(mult, lb, ub)