import torch.fx as fx from torch.fx.node import Argument, Target from torch.nn.utils.fusion import fuse_conv_bn_eval from typing import Type, Dict, Any, Tuple, Iterable, Optional, List, cast import torch import torch.nn as nn import torch.nn.functional as F from torch.fx.passes.shape_prop import ShapeProp import copy from collections import defaultdict import torch.utils.mkldnn as th_mkldnn import operator import time import logging from enum import Enum def _parent_name(target : str) -> Tuple[str, str]: """ Splits a qualname into parent path and last atom. For example, `foo.bar.baz` -> (`foo.bar`, `baz`) """ *parent, name = target.rsplit('.', 1) return parent[0] if parent else '', name # Works for length 2 patterns with 2 modules def matches_module_pattern(pattern: Iterable[Type], node: fx.Node, modules: Dict[str, Any]): if len(node.args) == 0: return False nodes: Tuple[Any, fx.Node] = (node.args[0], node) for expected_type, current_node in zip(pattern, nodes): if not isinstance(current_node, fx.Node): return False if current_node.op != 'call_module': return False if not isinstance(current_node.target, str): return False if current_node.target not in modules: return False if type(modules[current_node.target]) is not expected_type: return False return True def replace_node_module(node: fx.Node, modules: Dict[str, Any], new_module: torch.nn.Module): assert isinstance(node.target, str) parent_name, name = _parent_name(node.target) modules[node.target] = new_module setattr(modules[parent_name], name, new_module) def fuse(model: torch.nn.Module, inplace=False, no_trace=False) -> torch.nn.Module: """ Fuses convolution/BN layers for inference purposes. Will deepcopy your model by default, but can modify the model inplace as well. """ patterns = [(nn.Conv1d, nn.BatchNorm1d), (nn.Conv2d, nn.BatchNorm2d), (nn.Conv3d, nn.BatchNorm3d)] if not inplace: model = copy.deepcopy(model) if not no_trace or not isinstance(model, torch.fx.GraphModule): fx_model = fx.symbolic_trace(model) else: fx_model = model modules = dict(fx_model.named_modules()) new_graph = copy.deepcopy(fx_model.graph) for pattern in patterns: for node in new_graph.nodes: if matches_module_pattern(pattern, node, modules): if len(node.args[0].users) > 1: # Output of conv is used by other nodes continue conv = modules[node.args[0].target] bn = modules[node.target] if not bn.track_running_stats: continue fused_conv = fuse_conv_bn_eval(conv, bn) replace_node_module(node.args[0], modules, fused_conv) node.replace_all_uses_with(node.args[0]) new_graph.erase_node(node) return fx.GraphModule(fx_model, new_graph) def remove_dropout(model: nn.Module) -> nn.Module: """ Removes all dropout layers from the module. """ fx_model = fx.symbolic_trace(model) class DropoutRemover(torch.fx.Transformer): def call_module(self, target : Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any: if isinstance(self.submodules[target], nn.Dropout): assert len(args) == 1 return args[0] else: return super().call_module(target, args, kwargs) return DropoutRemover(fx_model).transform() def extract_subgraph(orig_module: nn.Module, nodes: List[fx.Node], inputs: List[fx.Node], outputs: List[fx.Node]): """ Given lists of nodes from an existing graph that represent a subgraph, returns a submodule that executes that subgraph. """ new_graph = fx.Graph() env: Dict[fx.Node, fx.Node] = {} for input in inputs: new_node = new_graph.placeholder(input.name) env[input] = new_node for node in nodes: new_node = new_graph.node_copy(node, lambda x: env[x]) env[node] = new_node new_graph.output([env[output] for output in outputs]) new_graph.lint() return fx.GraphModule(orig_module, new_graph) mkldnn_supported = [ nn.Conv2d, nn.Linear, nn.BatchNorm2d, nn.ReLU, nn.MaxPool2d, nn.AvgPool2d, nn.AdaptiveAvgPool2d, torch.relu, torch.transpose, torch.sigmoid, F.relu, F.avg_pool2d, F.adaptive_avg_pool2d ] # These are operators that may not be convertible into MKLDNN ops (e.g. the # args are scalar values). Thus, we only include them in the subgraph if their # arguments are already in MKLDNN. # TODO: Determine whether this can be removed after type inference. mkldnn_supported_unknown = [operator.add, operator.mul] mkldnn_map = { nn.Conv2d: th_mkldnn.MkldnnConv2d, nn.Linear: th_mkldnn.MkldnnLinear, nn.BatchNorm2d: lambda a, _: th_mkldnn.MkldnnBatchNorm(a) } def modules_to_mkldnn(nodes: List[fx.Node], modules: Dict[str, nn.Module]): """ For each node, if it's a module that can be preconverted into MKLDNN, then we do so and create a mapping to allow us to convert from the MKLDNN version of the module to the original. """ old_modules: Dict[nn.Module, nn.Module] = {} for node in nodes: if node.op == 'call_module': assert isinstance(node.target, str) cur_module = modules[node.target] if type(cur_module) in mkldnn_map: new_module = mkldnn_map[type(cur_module)](cur_module, torch.float) assert isinstance(new_module, nn.Module) old_modules[new_module] = copy.deepcopy(cur_module) replace_node_module(node, modules, new_module) return old_modules def reset_modules(nodes: List[fx.Node], modules: Dict[str, nn.Module], old_modules: Dict[nn.Module, nn.Module]): """ Maps each module that's been changed with `modules_to_mkldnn` back to its original. """ for node in nodes: if node.op == 'call_module': assert (isinstance(node.target, str)) cur_module = modules[node.target] if cur_module in old_modules: replace_node_module(node, modules, old_modules[cur_module]) class MklSubgraph: def __init__(self, fx_graph: fx.Graph): self.fx_graph = fx_graph self.nodes: List[fx.Node] = [] self.start_nodes: List[fx.Node] = [] self.end_nodes: List[fx.Node] = [] def gen_mkl_autotuner(example_inputs, iters=10, warmup=1): """ This generates a heuristic that can be passed into `optimize_for_inference` that determines whether a subgraph should be run in MKL by running it with the example_inputs. Example usage: heuristic = gen_mkl_autotuner(example_inputs, iters=10) fast_model = optimization.optimize_for_inference(model, heuristic) """ fx_model = None old_modules = None def use_mkl_heuristic(graph: MklSubgraph) -> bool: nonlocal fx_model, old_modules input_nodes = graph.start_nodes if fx_model is None: fx_model = graph.fx_graph.owning_module old_modules = graph.fx_graph.old_modules # type: ignore[attr-defined] ShapeProp(fx_model).propagate(example_inputs) sample_inputs = [torch.randn(node.shape) for node in input_nodes] # type: ignore[attr-defined] output_args = cast(List[fx.Node], [node.args[0] for node in graph.end_nodes]) submodule = extract_subgraph(fx_model, graph.nodes, input_nodes, output_args) def benchmark(f): for _ in range(warmup): f() begin = time.time() for _ in range(iters): out = f() return time.time() - begin mkl_time = benchmark(lambda: [i.to_dense() for i in submodule(*[i.to_mkldnn() for i in sample_inputs])]) reset_modules(submodule.graph.nodes, dict(submodule.named_modules()), old_modules) no_mkl_time = benchmark(lambda: submodule(*sample_inputs)) return mkl_time < no_mkl_time return use_mkl_heuristic def use_mkl_length(graph: MklSubgraph) -> bool: """ This is a heuristic that can be passed into `optimize_for_inference` that determines whether a subgraph should be run in MKL by checking if there are more than 2 nodes in it """ return len(graph.nodes) > 2 class UnionFind: def __init__(self, n): self.parent: List[Optional[int]] = [None] * n self.size: List[int] = [0] * n def make_set(self, v: int): self.parent[v] = v self.size[v] = 1 def find(self, v: int) -> int: par = self.parent[v] if v == par: return v assert par is not None self.parent[v] = self.find(par) return cast(int, self.parent[v]) def join(self, a: int, b: int): a, b = self.find(a), self.find(b) if a == b: return a if self.size[a] < self.size[b]: a, b = b, a self.parent[b] = a self.size[a] += self.size[b] def optimize_for_inference( model: torch.nn.Module, pass_config: Optional[Dict[str, Any]] = None, tracer: Type[fx.Tracer] = fx.Tracer ) -> torch.nn.Module: """ Performs a set of optimization passes to optimize a model for the purposes of inference. Specifically, the passes that are run are: 1. Conv/BN fusion 2. Dropout removal 3. MKL layout optimizations The third optimization takes a function `use_mkl_heuristic` that's used to determine whether a subgraph should be explicitly run in MKL layout. Note: As FX does not currently handle aliasing, this pass currently assumes nothing aliases. If that isn't true, use at your own risk. """ default_pass_config = { "conv_bn_fuse": True, "remove_dropout": True, "mkldnn_layout_optimize": {'heuristic': use_mkl_length}, } if pass_config is None: pass_config = {} default_pass_config.update(pass_config) if default_pass_config["conv_bn_fuse"]: model = fuse(model) if default_pass_config["remove_dropout"]: model = remove_dropout(model) if default_pass_config["mkldnn_layout_optimize"] is False: return model if not isinstance(default_pass_config["mkldnn_layout_optimize"], dict): raise RuntimeError("mkldnn_layout_optimize config is not a dict") if "heuristic" not in default_pass_config["mkldnn_layout_optimize"]: raise RuntimeError("Heuristic not found in mkldnn_layout_optimize config") use_mkl_heuristic = default_pass_config["mkldnn_layout_optimize"]["heuristic"] cur_tracer = tracer() fx_graph = cur_tracer.trace(copy.deepcopy(model)) fx_model = fx.GraphModule(cur_tracer.root, fx_graph) modules: Dict[str, nn.Module] = dict(model.named_modules()) class MklSupport(Enum): NO = 1 YES = 2 UNKNOWN = 3 # Inserts to_mkldnn and to_dense around every node we want to be a MKLDNN node. # If the op is in `mkldnn_supported` then we always treat it as a MKLDNN node. # However, if it's in `mkldnn_supported_unknown`, then we only treat it as # a MKLDNN node if its inputs are MKLDNN nodes. for node in list(fx_graph.nodes): supports_mkldnn = MklSupport.NO if node.op == 'call_module': cur_module = modules[node.target] if type(cur_module) in mkldnn_supported: supports_mkldnn = MklSupport.YES sample_parameter = next(cur_module.parameters(), None) if sample_parameter is not None: assert sample_parameter.dtype == torch.float, "this pass is only for torch.float modules" assert sample_parameter.device == torch.device('cpu'), "this pass is only for CPU modules" elif node.op == 'call_function': if node.target in mkldnn_supported: supports_mkldnn = MklSupport.YES elif node.target in mkldnn_supported_unknown: supports_mkldnn = MklSupport.UNKNOWN if supports_mkldnn != MklSupport.NO: if supports_mkldnn == MklSupport.UNKNOWN: if not any(arg.target == 'to_dense' for arg in node.args): continue with fx_graph.inserting_before(node): mkldnn_args = fx.map_arg(node.args, lambda n: fx_graph.call_method('to_mkldnn', (n, ))) node.args = cast(Tuple[fx.node.Argument], mkldnn_args) with fx_graph.inserting_after(node): dense_x = fx_graph.create_node('call_method', 'to_dense', (node,)) node.replace_all_uses_with(dense_x) dense_x.args = (node,) # Does pre-conversion of all modules into MKLDNN (when possible) old_modules = modules_to_mkldnn(list(fx_graph.nodes), modules) fx_graph.old_modules = old_modules # type: ignore[attr-defined] # optimizes all a -> to_dense -> to_mkldnn -> b patterns into a -> b for node in fx_graph.nodes: if node.op == 'call_method' and node.target == 'to_dense': prv_node = node.args[0] users = list(node.users) for user in users: if user.op == 'call_method' and user.target == 'to_mkldnn': user.replace_all_uses_with(prv_node) fx_graph.erase_node(user) if len(node.users) == 0: fx_graph.erase_node(node) num_nodes = len(fx_graph.nodes) uf = UnionFind(num_nodes) def get_color(n): if hasattr(n, 'color'): # Current node is part of a MKL subgraph return uf.find(n.color) if hasattr(n, 'start_color'): # Current node is input to MKL subgraph return uf.find(n.start_color) return None # This code is to find each MKLDNN subgraph. Each MKLDNN subgraph consists # of input nodes (which are only `to_mkldnn` calls), output nodes # (`to_dense` calls), and intermediate nodes, which are run entirely on # MKLDNN layout tensors. # # Specifically, this code does a flood fill on a directed acyclic graph # (DAG), starting from each possible "start node" (i.e: `to_mkldnn` nodes). # If every node only had one input, this would be sufficient. However, in # the case that a node has multiple inputs coming from different start # nodes (i.e. colors), we need to join these 2 colors into 1. That's done # using a Disjoint Set Union. for cur_idx, node in enumerate(fx_graph.nodes): if node.op == 'call_method' and node.target == 'to_mkldnn': node.start_color = cur_idx uf.make_set(cur_idx) elif node.op == 'call_method' and node.target == 'to_dense': assert get_color(node.args[0]) is not None node.end_color = get_color(node.args[0]) else: cur_colors = [get_color(i) for i in node.all_input_nodes if isinstance(i, fx.Node) if get_color(i) is not None] if len(cur_colors) == 0: continue assert not any(i is None for i in cur_colors) cur_colors = sorted(cur_colors) node.color = cur_colors[0] for other_color in cur_colors[1:]: uf.join(cur_colors[0], other_color) mkldnn_graphs: Dict[int, MklSubgraph] = defaultdict(lambda: MklSubgraph(fx_graph)) for node in fx_graph.nodes: if hasattr(node, 'color'): mkldnn_graphs[uf.find(node.color)].nodes.append(node) if hasattr(node, 'start_color'): mkldnn_graphs[uf.find(node.start_color)].start_nodes.append(node) if hasattr(node, 'end_color'): mkldnn_graphs[uf.find(node.end_color)].end_nodes.append(node) # Now that we have all the subgraphs, we need to decide which MKLDNN # subgraphs we actually want to keep in MKLDNN. for graph in mkldnn_graphs.values(): if not use_mkl_heuristic(graph): for node in graph.start_nodes + graph.end_nodes: prv = node.args[0] node.replace_all_uses_with(prv) fx_graph.erase_node(node) reset_modules(graph.nodes, modules, old_modules) mkldnn_conversions = 0 for node in fx_graph.nodes: if node.target == 'to_mkldnn' or node.target == 'to_dense': mkldnn_conversions += 1 logging.getLogger(__name__).info(f"mkldnn conversions: {mkldnn_conversions}") fx_graph.lint() result = fx.GraphModule(model, fx_graph) return result