import numpy as np from numpy.testing import assert_equal, assert_allclose import pytest from scipy.stats import variation from scipy._lib._util import AxisError class TestVariation: """ Test class for scipy.stats.variation """ def test_ddof(self): x = np.arange(9.0) assert_allclose(variation(x, ddof=1), np.sqrt(60/8)/4) @pytest.mark.parametrize('sgn', [1, -1]) def test_sign(self, sgn): x = np.array([1, 2, 3, 4, 5]) v = variation(sgn*x) expected = sgn*np.sqrt(2)/3 assert_allclose(v, expected, rtol=1e-10) def test_scalar(self): # A scalar is treated like a 1-d sequence with length 1. assert_equal(variation(4.0), 0.0) @pytest.mark.parametrize('nan_policy, expected', [('propagate', np.nan), ('omit', np.sqrt(20/3)/4)]) def test_variation_nan(self, nan_policy, expected): x = np.arange(10.) x[9] = np.nan assert_allclose(variation(x, nan_policy=nan_policy), expected) def test_nan_policy_raise(self): x = np.array([1.0, 2.0, np.nan, 3.0]) with pytest.raises(ValueError, match='input contains nan'): variation(x, nan_policy='raise') def test_bad_nan_policy(self): with pytest.raises(ValueError, match='must be one of'): variation([1, 2, 3], nan_policy='foobar') def test_keepdims(self): x = np.arange(10).reshape(2, 5) y = variation(x, axis=1, keepdims=True) expected = np.array([[np.sqrt(2)/2], [np.sqrt(2)/7]]) assert_allclose(y, expected) @pytest.mark.parametrize('axis, expected', [(0, np.empty((1, 0))), (1, np.full((5, 1), fill_value=np.nan))]) def test_keepdims_size0(self, axis, expected): x = np.zeros((5, 0)) y = variation(x, axis=axis, keepdims=True) assert_equal(y, expected) @pytest.mark.parametrize('incr, expected_fill', [(0, np.inf), (1, np.nan)]) def test_keepdims_and_ddof_eq_len_plus_incr(self, incr, expected_fill): x = np.array([[1, 1, 2, 2], [1, 2, 3, 3]]) y = variation(x, axis=1, ddof=x.shape[1] + incr, keepdims=True) assert_equal(y, np.full((2, 1), fill_value=expected_fill)) def test_propagate_nan(self): # Check that the shape of the result is the same for inputs # with and without nans, cf gh-5817 a = np.arange(8).reshape(2, -1).astype(float) a[1, 0] = np.nan v = variation(a, axis=1, nan_policy="propagate") assert_allclose(v, [np.sqrt(5/4)/1.5, np.nan], atol=1e-15) def test_axis_none(self): # Check that `variation` computes the result on the flattened # input when axis is None. y = variation([[0, 1], [2, 3]], axis=None) assert_allclose(y, np.sqrt(5/4)/1.5) def test_bad_axis(self): # Check that an invalid axis raises np.exceptions.AxisError. x = np.array([[1, 2, 3], [4, 5, 6]]) with pytest.raises(AxisError): variation(x, axis=10) def test_mean_zero(self): # Check that `variation` returns inf for a sequence that is not # identically zero but whose mean is zero. x = np.array([10, -3, 1, -4, -4]) y = variation(x) assert_equal(y, np.inf) x2 = np.array([x, -10*x]) y2 = variation(x2, axis=1) assert_equal(y2, [np.inf, np.inf]) @pytest.mark.parametrize('x', [np.zeros(5), [], [1, 2, np.inf, 9]]) def test_return_nan(self, x): # Test some cases where `variation` returns nan. y = variation(x) assert_equal(y, np.nan) @pytest.mark.parametrize('axis, expected', [(0, []), (1, [np.nan]*3), (None, np.nan)]) def test_2d_size_zero_with_axis(self, axis, expected): x = np.empty((3, 0)) y = variation(x, axis=axis) assert_equal(y, expected) def test_neg_inf(self): # Edge case that produces -inf: ddof equals the number of non-nan # values, the values are not constant, and the mean is negative. x1 = np.array([-3, -5]) assert_equal(variation(x1, ddof=2), -np.inf) x2 = np.array([[np.nan, 1, -10, np.nan], [-20, -3, np.nan, np.nan]]) assert_equal(variation(x2, axis=1, ddof=2, nan_policy='omit'), [-np.inf, -np.inf]) @pytest.mark.parametrize("nan_policy", ['propagate', 'omit']) def test_combined_edge_cases(self, nan_policy): x = np.array([[0, 10, np.nan, 1], [0, -5, np.nan, 2], [0, -5, np.nan, 3]]) y = variation(x, axis=0, nan_policy=nan_policy) assert_allclose(y, [np.nan, np.inf, np.nan, np.sqrt(2/3)/2]) @pytest.mark.parametrize( 'ddof, expected', [(0, [np.sqrt(1/6), np.sqrt(5/8), np.inf, 0, np.nan, 0.0, np.nan]), (1, [0.5, np.sqrt(5/6), np.inf, 0, np.nan, 0, np.nan]), (2, [np.sqrt(0.5), np.sqrt(5/4), np.inf, np.nan, np.nan, 0, np.nan])] ) def test_more_nan_policy_omit_tests(self, ddof, expected): # The slightly strange formatting in the follow array is my attempt to # maintain a clean tabular arrangement of the data while satisfying # the demands of pycodestyle. Currently, E201 and E241 are not # disabled by the `# noqa` annotation. nan = np.nan x = np.array([[1.0, 2.0, nan, 3.0], [0.0, 4.0, 3.0, 1.0], [nan, -.5, 0.5, nan], [nan, 9.0, 9.0, nan], [nan, nan, nan, nan], [3.0, 3.0, 3.0, 3.0], [0.0, 0.0, 0.0, 0.0]]) v = variation(x, axis=1, ddof=ddof, nan_policy='omit') assert_allclose(v, expected) def test_variation_ddof(self): # test variation with delta degrees of freedom # regression test for gh-13341 a = np.array([1, 2, 3, 4, 5]) nan_a = np.array([1, 2, 3, np.nan, 4, 5, np.nan]) y = variation(a, ddof=1) nan_y = variation(nan_a, nan_policy="omit", ddof=1) assert_allclose(y, np.sqrt(5/2)/3) assert y == nan_y