""" Tool to find wrong contour order between different masters, and other interpolatability (or lack thereof) issues. Call as: $ fonttools varLib.interpolatable font1 font2 ... """ from .interpolatableHelpers import * from .interpolatableTestContourOrder import test_contour_order from .interpolatableTestStartingPoint import test_starting_point from fontTools.pens.recordingPen import ( RecordingPen, DecomposingRecordingPen, lerpRecordings, ) from fontTools.pens.transformPen import TransformPen from fontTools.pens.statisticsPen import StatisticsPen, StatisticsControlPen from fontTools.pens.momentsPen import OpenContourError from fontTools.varLib.models import piecewiseLinearMap, normalizeLocation from fontTools.misc.fixedTools import floatToFixedToStr from fontTools.misc.transform import Transform from collections import defaultdict from types import SimpleNamespace from functools import wraps from pprint import pformat from math import sqrt, atan2, pi import logging import os log = logging.getLogger("fontTools.varLib.interpolatable") DEFAULT_TOLERANCE = 0.95 DEFAULT_KINKINESS = 0.5 DEFAULT_KINKINESS_LENGTH = 0.002 # ratio of UPEM DEFAULT_UPEM = 1000 class Glyph: ITEMS = ( "recordings", "greenStats", "controlStats", "greenVectors", "controlVectors", "nodeTypes", "isomorphisms", "points", "openContours", ) def __init__(self, glyphname, glyphset): self.name = glyphname for item in self.ITEMS: setattr(self, item, []) self._populate(glyphset) def _fill_in(self, ix): for item in self.ITEMS: if len(getattr(self, item)) == ix: getattr(self, item).append(None) def _populate(self, glyphset): glyph = glyphset[self.name] self.doesnt_exist = glyph is None if self.doesnt_exist: return perContourPen = PerContourOrComponentPen(RecordingPen, glyphset=glyphset) try: glyph.draw(perContourPen, outputImpliedClosingLine=True) except TypeError: glyph.draw(perContourPen) self.recordings = perContourPen.value del perContourPen for ix, contour in enumerate(self.recordings): nodeTypes = [op for op, arg in contour.value] self.nodeTypes.append(nodeTypes) greenStats = StatisticsPen(glyphset=glyphset) controlStats = StatisticsControlPen(glyphset=glyphset) try: contour.replay(greenStats) contour.replay(controlStats) self.openContours.append(False) except OpenContourError as e: self.openContours.append(True) self._fill_in(ix) continue self.greenStats.append(greenStats) self.controlStats.append(controlStats) self.greenVectors.append(contour_vector_from_stats(greenStats)) self.controlVectors.append(contour_vector_from_stats(controlStats)) # Check starting point if nodeTypes[0] == "addComponent": self._fill_in(ix) continue assert nodeTypes[0] == "moveTo" assert nodeTypes[-1] in ("closePath", "endPath") points = SimpleRecordingPointPen() converter = SegmentToPointPen(points, False) contour.replay(converter) # points.value is a list of pt,bool where bool is true if on-curve and false if off-curve; # now check all rotations and mirror-rotations of the contour and build list of isomorphic # possible starting points. self.points.append(points.value) isomorphisms = [] self.isomorphisms.append(isomorphisms) # Add rotations add_isomorphisms(points.value, isomorphisms, False) # Add mirrored rotations add_isomorphisms(points.value, isomorphisms, True) def draw(self, pen, countor_idx=None): if countor_idx is None: for contour in self.recordings: contour.draw(pen) else: self.recordings[countor_idx].draw(pen) def test_gen( glyphsets, glyphs=None, names=None, ignore_missing=False, *, locations=None, tolerance=DEFAULT_TOLERANCE, kinkiness=DEFAULT_KINKINESS, upem=DEFAULT_UPEM, show_all=False, ): if tolerance >= 10: tolerance *= 0.01 assert 0 <= tolerance <= 1 if kinkiness >= 10: kinkiness *= 0.01 assert 0 <= kinkiness names = names or [repr(g) for g in glyphsets] if glyphs is None: # `glyphs = glyphsets[0].keys()` is faster, certainly, but doesn't allow for sparse TTFs/OTFs given out of order # ... risks the sparse master being the first one, and only processing a subset of the glyphs glyphs = {g for glyphset in glyphsets for g in glyphset.keys()} parents, order = find_parents_and_order(glyphsets, locations) def grand_parent(i, glyphname): if i is None: return None i = parents[i] if i is None: return None while parents[i] is not None and glyphsets[i][glyphname] is None: i = parents[i] return i for glyph_name in glyphs: log.info("Testing glyph %s", glyph_name) allGlyphs = [Glyph(glyph_name, glyphset) for glyphset in glyphsets] if len([1 for glyph in allGlyphs if glyph is not None]) <= 1: continue for master_idx, (glyph, glyphset, name) in enumerate( zip(allGlyphs, glyphsets, names) ): if glyph.doesnt_exist: if not ignore_missing: yield ( glyph_name, { "type": InterpolatableProblem.MISSING, "master": name, "master_idx": master_idx, }, ) continue has_open = False for ix, open in enumerate(glyph.openContours): if not open: continue has_open = True yield ( glyph_name, { "type": InterpolatableProblem.OPEN_PATH, "master": name, "master_idx": master_idx, "contour": ix, }, ) if has_open: continue matchings = [None] * len(glyphsets) for m1idx in order: glyph1 = allGlyphs[m1idx] if glyph1 is None or not glyph1.nodeTypes: continue m0idx = grand_parent(m1idx, glyph_name) if m0idx is None: continue glyph0 = allGlyphs[m0idx] if glyph0 is None or not glyph0.nodeTypes: continue # # Basic compatibility checks # m1 = glyph0.nodeTypes m0 = glyph1.nodeTypes if len(m0) != len(m1): yield ( glyph_name, { "type": InterpolatableProblem.PATH_COUNT, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, "value_1": len(m0), "value_2": len(m1), }, ) continue if m0 != m1: for pathIx, (nodes1, nodes2) in enumerate(zip(m0, m1)): if nodes1 == nodes2: continue if len(nodes1) != len(nodes2): yield ( glyph_name, { "type": InterpolatableProblem.NODE_COUNT, "path": pathIx, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, "value_1": len(nodes1), "value_2": len(nodes2), }, ) continue for nodeIx, (n1, n2) in enumerate(zip(nodes1, nodes2)): if n1 != n2: yield ( glyph_name, { "type": InterpolatableProblem.NODE_INCOMPATIBILITY, "path": pathIx, "node": nodeIx, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, "value_1": n1, "value_2": n2, }, ) continue # # InterpolatableProblem.CONTOUR_ORDER check # this_tolerance, matching = test_contour_order(glyph0, glyph1) if this_tolerance < tolerance: yield ( glyph_name, { "type": InterpolatableProblem.CONTOUR_ORDER, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, "value_1": list(range(len(matching))), "value_2": matching, "tolerance": this_tolerance, }, ) matchings[m1idx] = matching # # wrong-start-point / weight check # m0Isomorphisms = glyph0.isomorphisms m1Isomorphisms = glyph1.isomorphisms m0Vectors = glyph0.greenVectors m1Vectors = glyph1.greenVectors recording0 = glyph0.recordings recording1 = glyph1.recordings # If contour-order is wrong, adjust it matching = matchings[m1idx] if ( matching is not None and m1Isomorphisms ): # m1 is empty for composite glyphs m1Isomorphisms = [m1Isomorphisms[i] for i in matching] m1Vectors = [m1Vectors[i] for i in matching] recording1 = [recording1[i] for i in matching] midRecording = [] for c0, c1 in zip(recording0, recording1): try: r = RecordingPen() r.value = list(lerpRecordings(c0.value, c1.value)) midRecording.append(r) except ValueError: # Mismatch because of the reordering above midRecording.append(None) for ix, (contour0, contour1) in enumerate( zip(m0Isomorphisms, m1Isomorphisms) ): if ( contour0 is None or contour1 is None or len(contour0) == 0 or len(contour0) != len(contour1) ): # We already reported this; or nothing to do; or not compatible # after reordering above. continue this_tolerance, proposed_point, reverse = test_starting_point( glyph0, glyph1, ix, tolerance, matching ) if this_tolerance < tolerance: yield ( glyph_name, { "type": InterpolatableProblem.WRONG_START_POINT, "contour": ix, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, "value_1": 0, "value_2": proposed_point, "reversed": reverse, "tolerance": this_tolerance, }, ) # Weight check. # # If contour could be mid-interpolated, and the two # contours have the same area sign, proceeed. # # The sign difference can happen if it's a weirdo # self-intersecting contour; ignore it. contour = midRecording[ix] if contour and (m0Vectors[ix][0] < 0) == (m1Vectors[ix][0] < 0): midStats = StatisticsPen(glyphset=None) contour.replay(midStats) midVector = contour_vector_from_stats(midStats) m0Vec = m0Vectors[ix] m1Vec = m1Vectors[ix] size0 = m0Vec[0] * m0Vec[0] size1 = m1Vec[0] * m1Vec[0] midSize = midVector[0] * midVector[0] for overweight, problem_type in enumerate( ( InterpolatableProblem.UNDERWEIGHT, InterpolatableProblem.OVERWEIGHT, ) ): if overweight: expectedSize = max(size0, size1) continue else: expectedSize = sqrt(size0 * size1) log.debug( "%s: actual size %g; threshold size %g, master sizes: %g, %g", problem_type, midSize, expectedSize, size0, size1, ) if ( not overweight and expectedSize * tolerance > midSize + 1e-5 ) or (overweight and 1e-5 + expectedSize / tolerance < midSize): try: if overweight: this_tolerance = expectedSize / midSize else: this_tolerance = midSize / expectedSize except ZeroDivisionError: this_tolerance = 0 log.debug("tolerance %g", this_tolerance) yield ( glyph_name, { "type": problem_type, "contour": ix, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, "tolerance": this_tolerance, }, ) # # "kink" detector # m0 = glyph0.points m1 = glyph1.points # If contour-order is wrong, adjust it if matchings[m1idx] is not None and m1: # m1 is empty for composite glyphs m1 = [m1[i] for i in matchings[m1idx]] t = 0.1 # ~sin(radian(6)) for tolerance 0.95 deviation_threshold = ( upem * DEFAULT_KINKINESS_LENGTH * DEFAULT_KINKINESS / kinkiness ) for ix, (contour0, contour1) in enumerate(zip(m0, m1)): if ( contour0 is None or contour1 is None or len(contour0) == 0 or len(contour0) != len(contour1) ): # We already reported this; or nothing to do; or not compatible # after reordering above. continue # Walk the contour, keeping track of three consecutive points, with # middle one being an on-curve. If the three are co-linear then # check for kinky-ness. for i in range(len(contour0)): pt0 = contour0[i] pt1 = contour1[i] if not pt0[1] or not pt1[1]: # Skip off-curves continue pt0_prev = contour0[i - 1] pt1_prev = contour1[i - 1] pt0_next = contour0[(i + 1) % len(contour0)] pt1_next = contour1[(i + 1) % len(contour1)] if pt0_prev[1] and pt1_prev[1]: # At least one off-curve is required continue if pt0_prev[1] and pt1_prev[1]: # At least one off-curve is required continue pt0 = complex(*pt0[0]) pt1 = complex(*pt1[0]) pt0_prev = complex(*pt0_prev[0]) pt1_prev = complex(*pt1_prev[0]) pt0_next = complex(*pt0_next[0]) pt1_next = complex(*pt1_next[0]) # We have three consecutive points. Check whether # they are colinear. d0_prev = pt0 - pt0_prev d0_next = pt0_next - pt0 d1_prev = pt1 - pt1_prev d1_next = pt1_next - pt1 sin0 = d0_prev.real * d0_next.imag - d0_prev.imag * d0_next.real sin1 = d1_prev.real * d1_next.imag - d1_prev.imag * d1_next.real try: sin0 /= abs(d0_prev) * abs(d0_next) sin1 /= abs(d1_prev) * abs(d1_next) except ZeroDivisionError: continue if abs(sin0) > t or abs(sin1) > t: # Not colinear / not smooth. continue # Check the mid-point is actually, well, in the middle. dot0 = d0_prev.real * d0_next.real + d0_prev.imag * d0_next.imag dot1 = d1_prev.real * d1_next.real + d1_prev.imag * d1_next.imag if dot0 < 0 or dot1 < 0: # Sharp corner. continue # Fine, if handle ratios are similar... r0 = abs(d0_prev) / (abs(d0_prev) + abs(d0_next)) r1 = abs(d1_prev) / (abs(d1_prev) + abs(d1_next)) r_diff = abs(r0 - r1) if abs(r_diff) < t: # Smooth enough. continue mid = (pt0 + pt1) / 2 mid_prev = (pt0_prev + pt1_prev) / 2 mid_next = (pt0_next + pt1_next) / 2 mid_d0 = mid - mid_prev mid_d1 = mid_next - mid sin_mid = mid_d0.real * mid_d1.imag - mid_d0.imag * mid_d1.real try: sin_mid /= abs(mid_d0) * abs(mid_d1) except ZeroDivisionError: continue # ...or if the angles are similar. if abs(sin_mid) * (tolerance * kinkiness) <= t: # Smooth enough. continue # How visible is the kink? cross = sin_mid * abs(mid_d0) * abs(mid_d1) arc_len = abs(mid_d0 + mid_d1) deviation = abs(cross / arc_len) if deviation < deviation_threshold: continue deviation_ratio = deviation / arc_len if deviation_ratio > t: continue this_tolerance = t / (abs(sin_mid) * kinkiness) log.debug( "kink: deviation %g; deviation_ratio %g; sin_mid %g; r_diff %g", deviation, deviation_ratio, sin_mid, r_diff, ) log.debug("tolerance %g", this_tolerance) yield ( glyph_name, { "type": InterpolatableProblem.KINK, "contour": ix, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, "value": i, "tolerance": this_tolerance, }, ) # # --show-all # if show_all: yield ( glyph_name, { "type": InterpolatableProblem.NOTHING, "master_1": names[m0idx], "master_2": names[m1idx], "master_1_idx": m0idx, "master_2_idx": m1idx, }, ) @wraps(test_gen) def test(*args, **kwargs): problems = defaultdict(list) for glyphname, problem in test_gen(*args, **kwargs): problems[glyphname].append(problem) return problems def recursivelyAddGlyph(glyphname, glyphset, ttGlyphSet, glyf): if glyphname in glyphset: return glyphset[glyphname] = ttGlyphSet[glyphname] for component in getattr(glyf[glyphname], "components", []): recursivelyAddGlyph(component.glyphName, glyphset, ttGlyphSet, glyf) def ensure_parent_dir(path): dirname = os.path.dirname(path) if dirname: os.makedirs(dirname, exist_ok=True) return path def main(args=None): """Test for interpolatability issues between fonts""" import argparse import sys parser = argparse.ArgumentParser( "fonttools varLib.interpolatable", description=main.__doc__, ) parser.add_argument( "--glyphs", action="store", help="Space-separate name of glyphs to check", ) parser.add_argument( "--show-all", action="store_true", help="Show all glyph pairs, even if no problems are found", ) parser.add_argument( "--tolerance", action="store", type=float, help="Error tolerance. Between 0 and 1. Default %s" % DEFAULT_TOLERANCE, ) parser.add_argument( "--kinkiness", action="store", type=float, help="How aggressively report kinks. Default %s" % DEFAULT_KINKINESS, ) parser.add_argument( "--json", action="store_true", help="Output report in JSON format", ) parser.add_argument( "--pdf", action="store", help="Output report in PDF format", ) parser.add_argument( "--ps", action="store", help="Output report in PostScript format", ) parser.add_argument( "--html", action="store", help="Output report in HTML format", ) parser.add_argument( "--quiet", action="store_true", help="Only exit with code 1 or 0, no output", ) parser.add_argument( "--output", action="store", help="Output file for the problem report; Default: stdout", ) parser.add_argument( "--ignore-missing", action="store_true", help="Will not report glyphs missing from sparse masters as errors", ) parser.add_argument( "inputs", metavar="FILE", type=str, nargs="+", help="Input a single variable font / DesignSpace / Glyphs file, or multiple TTF/UFO files", ) parser.add_argument( "--name", metavar="NAME", type=str, action="append", help="Name of the master to use in the report. If not provided, all are used.", ) parser.add_argument("-v", "--verbose", action="store_true", help="Run verbosely.") parser.add_argument("--debug", action="store_true", help="Run with debug output.") args = parser.parse_args(args) from fontTools import configLogger configLogger(level=("INFO" if args.verbose else "ERROR")) if args.debug: configLogger(level="DEBUG") glyphs = args.glyphs.split() if args.glyphs else None from os.path import basename fonts = [] names = [] locations = [] upem = DEFAULT_UPEM original_args_inputs = tuple(args.inputs) if len(args.inputs) == 1: designspace = None if args.inputs[0].endswith(".designspace"): from fontTools.designspaceLib import DesignSpaceDocument designspace = DesignSpaceDocument.fromfile(args.inputs[0]) args.inputs = [master.path for master in designspace.sources] locations = [master.location for master in designspace.sources] axis_triples = { a.name: (a.minimum, a.default, a.maximum) for a in designspace.axes } axis_mappings = {a.name: a.map for a in designspace.axes} axis_triples = { k: tuple(piecewiseLinearMap(v, dict(axis_mappings[k])) for v in vv) for k, vv in axis_triples.items() } elif args.inputs[0].endswith((".glyphs", ".glyphspackage")): from glyphsLib import GSFont, to_designspace gsfont = GSFont(args.inputs[0]) upem = gsfont.upm designspace = to_designspace(gsfont) fonts = [source.font for source in designspace.sources] names = ["%s-%s" % (f.info.familyName, f.info.styleName) for f in fonts] args.inputs = [] locations = [master.location for master in designspace.sources] axis_triples = { a.name: (a.minimum, a.default, a.maximum) for a in designspace.axes } axis_mappings = {a.name: a.map for a in designspace.axes} axis_triples = { k: tuple(piecewiseLinearMap(v, dict(axis_mappings[k])) for v in vv) for k, vv in axis_triples.items() } elif args.inputs[0].endswith(".ttf"): from fontTools.ttLib import TTFont font = TTFont(args.inputs[0]) upem = font["head"].unitsPerEm if "gvar" in font: # Is variable font axisMapping = {} fvar = font["fvar"] for axis in fvar.axes: axisMapping[axis.axisTag] = { -1: axis.minValue, 0: axis.defaultValue, 1: axis.maxValue, } if "avar" in font: avar = font["avar"] for axisTag, segments in avar.segments.items(): fvarMapping = axisMapping[axisTag].copy() for location, value in segments.items(): axisMapping[axisTag][value] = piecewiseLinearMap( location, fvarMapping ) gvar = font["gvar"] glyf = font["glyf"] # Gather all glyphs at their "master" locations ttGlyphSets = {} glyphsets = defaultdict(dict) if glyphs is None: glyphs = sorted(gvar.variations.keys()) for glyphname in glyphs: for var in gvar.variations[glyphname]: locDict = {} loc = [] for tag, val in sorted(var.axes.items()): locDict[tag] = val[1] loc.append((tag, val[1])) locTuple = tuple(loc) if locTuple not in ttGlyphSets: ttGlyphSets[locTuple] = font.getGlyphSet( location=locDict, normalized=True, recalcBounds=False ) recursivelyAddGlyph( glyphname, glyphsets[locTuple], ttGlyphSets[locTuple], glyf ) names = ["''"] fonts = [font.getGlyphSet()] locations = [{}] axis_triples = {a: (-1, 0, +1) for a in sorted(axisMapping.keys())} for locTuple in sorted(glyphsets.keys(), key=lambda v: (len(v), v)): name = ( "'" + " ".join( "%s=%s" % ( k, floatToFixedToStr( piecewiseLinearMap(v, axisMapping[k]), 14 ), ) for k, v in locTuple ) + "'" ) names.append(name) fonts.append(glyphsets[locTuple]) locations.append(dict(locTuple)) args.ignore_missing = True args.inputs = [] if not locations: locations = [{} for _ in fonts] for filename in args.inputs: if filename.endswith(".ufo"): from fontTools.ufoLib import UFOReader font = UFOReader(filename) info = SimpleNamespace() font.readInfo(info) upem = info.unitsPerEm fonts.append(font) else: from fontTools.ttLib import TTFont font = TTFont(filename) upem = font["head"].unitsPerEm fonts.append(font) names.append(basename(filename).rsplit(".", 1)[0]) glyphsets = [] for font in fonts: if hasattr(font, "getGlyphSet"): glyphset = font.getGlyphSet() else: glyphset = font glyphsets.append({k: glyphset[k] for k in glyphset.keys()}) if args.name: accepted_names = set(args.name) glyphsets = [ glyphset for name, glyphset in zip(names, glyphsets) if name in accepted_names ] locations = [ location for name, location in zip(names, locations) if name in accepted_names ] names = [name for name in names if name in accepted_names] if not glyphs: glyphs = sorted(set([gn for glyphset in glyphsets for gn in glyphset.keys()])) glyphsSet = set(glyphs) for glyphset in glyphsets: glyphSetGlyphNames = set(glyphset.keys()) diff = glyphsSet - glyphSetGlyphNames if diff: for gn in diff: glyphset[gn] = None # Normalize locations locations = [normalizeLocation(loc, axis_triples) for loc in locations] tolerance = args.tolerance or DEFAULT_TOLERANCE kinkiness = args.kinkiness if args.kinkiness is not None else DEFAULT_KINKINESS try: log.info("Running on %d glyphsets", len(glyphsets)) log.info("Locations: %s", pformat(locations)) problems_gen = test_gen( glyphsets, glyphs=glyphs, names=names, locations=locations, upem=upem, ignore_missing=args.ignore_missing, tolerance=tolerance, kinkiness=kinkiness, show_all=args.show_all, ) problems = defaultdict(list) f = ( sys.stdout if args.output is None else open(ensure_parent_dir(args.output), "w") ) if not args.quiet: if args.json: import json for glyphname, problem in problems_gen: problems[glyphname].append(problem) print(json.dumps(problems), file=f) else: last_glyphname = None for glyphname, p in problems_gen: problems[glyphname].append(p) if glyphname != last_glyphname: print(f"Glyph {glyphname} was not compatible:", file=f) last_glyphname = glyphname last_master_idxs = None master_idxs = ( (p["master_idx"]) if "master_idx" in p else (p["master_1_idx"], p["master_2_idx"]) ) if master_idxs != last_master_idxs: master_names = ( (p["master"]) if "master" in p else (p["master_1"], p["master_2"]) ) print(f" Masters: %s:" % ", ".join(master_names), file=f) last_master_idxs = master_idxs if p["type"] == InterpolatableProblem.MISSING: print( " Glyph was missing in master %s" % p["master"], file=f ) elif p["type"] == InterpolatableProblem.OPEN_PATH: print( " Glyph has an open path in master %s" % p["master"], file=f, ) elif p["type"] == InterpolatableProblem.PATH_COUNT: print( " Path count differs: %i in %s, %i in %s" % ( p["value_1"], p["master_1"], p["value_2"], p["master_2"], ), file=f, ) elif p["type"] == InterpolatableProblem.NODE_COUNT: print( " Node count differs in path %i: %i in %s, %i in %s" % ( p["path"], p["value_1"], p["master_1"], p["value_2"], p["master_2"], ), file=f, ) elif p["type"] == InterpolatableProblem.NODE_INCOMPATIBILITY: print( " Node %o incompatible in path %i: %s in %s, %s in %s" % ( p["node"], p["path"], p["value_1"], p["master_1"], p["value_2"], p["master_2"], ), file=f, ) elif p["type"] == InterpolatableProblem.CONTOUR_ORDER: print( " Contour order differs: %s in %s, %s in %s" % ( p["value_1"], p["master_1"], p["value_2"], p["master_2"], ), file=f, ) elif p["type"] == InterpolatableProblem.WRONG_START_POINT: print( " Contour %d start point differs: %s in %s, %s in %s; reversed: %s" % ( p["contour"], p["value_1"], p["master_1"], p["value_2"], p["master_2"], p["reversed"], ), file=f, ) elif p["type"] == InterpolatableProblem.UNDERWEIGHT: print( " Contour %d interpolation is underweight: %s, %s" % ( p["contour"], p["master_1"], p["master_2"], ), file=f, ) elif p["type"] == InterpolatableProblem.OVERWEIGHT: print( " Contour %d interpolation is overweight: %s, %s" % ( p["contour"], p["master_1"], p["master_2"], ), file=f, ) elif p["type"] == InterpolatableProblem.KINK: print( " Contour %d has a kink at %s: %s, %s" % ( p["contour"], p["value"], p["master_1"], p["master_2"], ), file=f, ) elif p["type"] == InterpolatableProblem.NOTHING: print( " Showing %s and %s" % ( p["master_1"], p["master_2"], ), file=f, ) else: for glyphname, problem in problems_gen: problems[glyphname].append(problem) problems = sort_problems(problems) for p in "ps", "pdf": arg = getattr(args, p) if arg is None: continue log.info("Writing %s to %s", p.upper(), arg) from .interpolatablePlot import InterpolatablePS, InterpolatablePDF PlotterClass = InterpolatablePS if p == "ps" else InterpolatablePDF with PlotterClass( ensure_parent_dir(arg), glyphsets=glyphsets, names=names ) as doc: doc.add_title_page( original_args_inputs, tolerance=tolerance, kinkiness=kinkiness ) if problems: doc.add_summary(problems) doc.add_problems(problems) if not problems and not args.quiet: doc.draw_cupcake() if problems: doc.add_index() doc.add_table_of_contents() if args.html: log.info("Writing HTML to %s", args.html) from .interpolatablePlot import InterpolatableSVG svgs = [] glyph_starts = {} with InterpolatableSVG(svgs, glyphsets=glyphsets, names=names) as svg: svg.add_title_page( original_args_inputs, show_tolerance=False, tolerance=tolerance, kinkiness=kinkiness, ) for glyph, glyph_problems in problems.items(): glyph_starts[len(svgs)] = glyph svg.add_problems( {glyph: glyph_problems}, show_tolerance=False, show_page_number=False, ) if not problems and not args.quiet: svg.draw_cupcake() import base64 with open(ensure_parent_dir(args.html), "wb") as f: f.write(b"\n") f.write( b'
\n' ) f.write(b"