"""Variation fonts interpolation models.""" __all__ = [ "normalizeValue", "normalizeLocation", "supportScalar", "piecewiseLinearMap", "VariationModel", ] from fontTools.misc.roundTools import noRound from .errors import VariationModelError def nonNone(lst): return [l for l in lst if l is not None] def allNone(lst): return all(l is None for l in lst) def allEqualTo(ref, lst, mapper=None): if mapper is None: return all(ref == item for item in lst) mapped = mapper(ref) return all(mapped == mapper(item) for item in lst) def allEqual(lst, mapper=None): if not lst: return True it = iter(lst) try: first = next(it) except StopIteration: return True return allEqualTo(first, it, mapper=mapper) def subList(truth, lst): assert len(truth) == len(lst) return [l for l, t in zip(lst, truth) if t] def normalizeValue(v, triple, extrapolate=False): """Normalizes value based on a min/default/max triple. >>> normalizeValue(400, (100, 400, 900)) 0.0 >>> normalizeValue(100, (100, 400, 900)) -1.0 >>> normalizeValue(650, (100, 400, 900)) 0.5 """ lower, default, upper = triple if not (lower <= default <= upper): raise ValueError( f"Invalid axis values, must be minimum, default, maximum: " f"{lower:3.3f}, {default:3.3f}, {upper:3.3f}" ) if not extrapolate: v = max(min(v, upper), lower) if v == default or lower == upper: return 0.0 if (v < default and lower != default) or (v > default and upper == default): return (v - default) / (default - lower) else: assert (v > default and upper != default) or ( v < default and lower == default ), f"Ooops... v={v}, triple=({lower}, {default}, {upper})" return (v - default) / (upper - default) def normalizeLocation(location, axes, extrapolate=False): """Normalizes location based on axis min/default/max values from axes. >>> axes = {"wght": (100, 400, 900)} >>> normalizeLocation({"wght": 400}, axes) {'wght': 0.0} >>> normalizeLocation({"wght": 100}, axes) {'wght': -1.0} >>> normalizeLocation({"wght": 900}, axes) {'wght': 1.0} >>> normalizeLocation({"wght": 650}, axes) {'wght': 0.5} >>> normalizeLocation({"wght": 1000}, axes) {'wght': 1.0} >>> normalizeLocation({"wght": 0}, axes) {'wght': -1.0} >>> axes = {"wght": (0, 0, 1000)} >>> normalizeLocation({"wght": 0}, axes) {'wght': 0.0} >>> normalizeLocation({"wght": -1}, axes) {'wght': 0.0} >>> normalizeLocation({"wght": 1000}, axes) {'wght': 1.0} >>> normalizeLocation({"wght": 500}, axes) {'wght': 0.5} >>> normalizeLocation({"wght": 1001}, axes) {'wght': 1.0} >>> axes = {"wght": (0, 1000, 1000)} >>> normalizeLocation({"wght": 0}, axes) {'wght': -1.0} >>> normalizeLocation({"wght": -1}, axes) {'wght': -1.0} >>> normalizeLocation({"wght": 500}, axes) {'wght': -0.5} >>> normalizeLocation({"wght": 1000}, axes) {'wght': 0.0} >>> normalizeLocation({"wght": 1001}, axes) {'wght': 0.0} """ out = {} for tag, triple in axes.items(): v = location.get(tag, triple[1]) out[tag] = normalizeValue(v, triple, extrapolate=extrapolate) return out def supportScalar(location, support, ot=True, extrapolate=False, axisRanges=None): """Returns the scalar multiplier at location, for a master with support. If ot is True, then a peak value of zero for support of an axis means "axis does not participate". That is how OpenType Variation Font technology works. If extrapolate is True, axisRanges must be a dict that maps axis names to (axisMin, axisMax) tuples. >>> supportScalar({}, {}) 1.0 >>> supportScalar({'wght':.2}, {}) 1.0 >>> supportScalar({'wght':.2}, {'wght':(0,2,3)}) 0.1 >>> supportScalar({'wght':2.5}, {'wght':(0,2,4)}) 0.75 >>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}) 0.75 >>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}, ot=False) 0.375 >>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}) 0.75 >>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}) 0.75 >>> supportScalar({'wght':3}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)}) -1.0 >>> supportScalar({'wght':-1}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)}) -1.0 >>> supportScalar({'wght':3}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)}) 1.5 >>> supportScalar({'wght':-1}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)}) -0.5 """ if extrapolate and axisRanges is None: raise TypeError("axisRanges must be passed when extrapolate is True") scalar = 1.0 for axis, (lower, peak, upper) in support.items(): if ot: # OpenType-specific case handling if peak == 0.0: continue if lower > peak or peak > upper: continue if lower < 0.0 and upper > 0.0: continue v = location.get(axis, 0.0) else: assert axis in location v = location[axis] if v == peak: continue if extrapolate: axisMin, axisMax = axisRanges[axis] if v < axisMin and lower <= axisMin: if peak <= axisMin and peak < upper: scalar *= (v - upper) / (peak - upper) continue elif axisMin < peak: scalar *= (v - lower) / (peak - lower) continue elif axisMax < v and axisMax <= upper: if axisMax <= peak and lower < peak: scalar *= (v - lower) / (peak - lower) continue elif peak < axisMax: scalar *= (v - upper) / (peak - upper) continue if v <= lower or upper <= v: scalar = 0.0 break if v < peak: scalar *= (v - lower) / (peak - lower) else: # v > peak scalar *= (v - upper) / (peak - upper) return scalar class VariationModel(object): """Locations must have the base master at the origin (ie. 0). If the extrapolate argument is set to True, then values are extrapolated outside the axis range. >>> from pprint import pprint >>> locations = [ \ {'wght':100}, \ {'wght':-100}, \ {'wght':-180}, \ {'wdth':+.3}, \ {'wght':+120,'wdth':.3}, \ {'wght':+120,'wdth':.2}, \ {}, \ {'wght':+180,'wdth':.3}, \ {'wght':+180}, \ ] >>> model = VariationModel(locations, axisOrder=['wght']) >>> pprint(model.locations) [{}, {'wght': -100}, {'wght': -180}, {'wght': 100}, {'wght': 180}, {'wdth': 0.3}, {'wdth': 0.3, 'wght': 180}, {'wdth': 0.3, 'wght': 120}, {'wdth': 0.2, 'wght': 120}] >>> pprint(model.deltaWeights) [{}, {0: 1.0}, {0: 1.0}, {0: 1.0}, {0: 1.0}, {0: 1.0}, {0: 1.0, 4: 1.0, 5: 1.0}, {0: 1.0, 3: 0.75, 4: 0.25, 5: 1.0, 6: 0.6666666666666666}, {0: 1.0, 3: 0.75, 4: 0.25, 5: 0.6666666666666667, 6: 0.4444444444444445, 7: 0.6666666666666667}] """ def __init__(self, locations, axisOrder=None, extrapolate=False): if len(set(tuple(sorted(l.items())) for l in locations)) != len(locations): raise VariationModelError("Locations must be unique.") self.origLocations = locations self.axisOrder = axisOrder if axisOrder is not None else [] self.extrapolate = extrapolate self.axisRanges = self.computeAxisRanges(locations) if extrapolate else None locations = [{k: v for k, v in loc.items() if v != 0.0} for loc in locations] keyFunc = self.getMasterLocationsSortKeyFunc( locations, axisOrder=self.axisOrder ) self.locations = sorted(locations, key=keyFunc) # Mapping from user's master order to our master order self.mapping = [self.locations.index(l) for l in locations] self.reverseMapping = [locations.index(l) for l in self.locations] self._computeMasterSupports() self._subModels = {} def getSubModel(self, items): """Return a sub-model and the items that are not None. The sub-model is necessary for working with the subset of items when some are None. The sub-model is cached.""" if None not in items: return self, items key = tuple(v is not None for v in items) subModel = self._subModels.get(key) if subModel is None: subModel = VariationModel(subList(key, self.origLocations), self.axisOrder) self._subModels[key] = subModel return subModel, subList(key, items) @staticmethod def computeAxisRanges(locations): axisRanges = {} allAxes = {axis for loc in locations for axis in loc.keys()} for loc in locations: for axis in allAxes: value = loc.get(axis, 0) axisMin, axisMax = axisRanges.get(axis, (value, value)) axisRanges[axis] = min(value, axisMin), max(value, axisMax) return axisRanges @staticmethod def getMasterLocationsSortKeyFunc(locations, axisOrder=[]): if {} not in locations: raise VariationModelError("Base master not found.") axisPoints = {} for loc in locations: if len(loc) != 1: continue axis = next(iter(loc)) value = loc[axis] if axis not in axisPoints: axisPoints[axis] = {0.0} assert ( value not in axisPoints[axis] ), 'Value "%s" in axisPoints["%s"] --> %s' % (value, axis, axisPoints) axisPoints[axis].add(value) def getKey(axisPoints, axisOrder): def sign(v): return -1 if v < 0 else +1 if v > 0 else 0 def key(loc): rank = len(loc) onPointAxes = [ axis for axis, value in loc.items() if axis in axisPoints and value in axisPoints[axis] ] orderedAxes = [axis for axis in axisOrder if axis in loc] orderedAxes.extend( [axis for axis in sorted(loc.keys()) if axis not in axisOrder] ) return ( rank, # First, order by increasing rank -len(onPointAxes), # Next, by decreasing number of onPoint axes tuple( axisOrder.index(axis) if axis in axisOrder else 0x10000 for axis in orderedAxes ), # Next, by known axes tuple(orderedAxes), # Next, by all axes tuple( sign(loc[axis]) for axis in orderedAxes ), # Next, by signs of axis values tuple( abs(loc[axis]) for axis in orderedAxes ), # Next, by absolute value of axis values ) return key ret = getKey(axisPoints, axisOrder) return ret def reorderMasters(self, master_list, mapping): # For changing the master data order without # recomputing supports and deltaWeights. new_list = [master_list[idx] for idx in mapping] self.origLocations = [self.origLocations[idx] for idx in mapping] locations = [ {k: v for k, v in loc.items() if v != 0.0} for loc in self.origLocations ] self.mapping = [self.locations.index(l) for l in locations] self.reverseMapping = [locations.index(l) for l in self.locations] self._subModels = {} return new_list def _computeMasterSupports(self): self.supports = [] regions = self._locationsToRegions() for i, region in enumerate(regions): locAxes = set(region.keys()) # Walk over previous masters now for prev_region in regions[:i]: # Master with extra axes do not participte if set(prev_region.keys()) != locAxes: continue # If it's NOT in the current box, it does not participate relevant = True for axis, (lower, peak, upper) in region.items(): if not ( prev_region[axis][1] == peak or lower < prev_region[axis][1] < upper ): relevant = False break if not relevant: continue # Split the box for new master; split in whatever direction # that has largest range ratio. # # For symmetry, we actually cut across multiple axes # if they have the largest, equal, ratio. # https://github.com/fonttools/fonttools/commit/7ee81c8821671157968b097f3e55309a1faa511e#commitcomment-31054804 bestAxes = {} bestRatio = -1 for axis in prev_region.keys(): val = prev_region[axis][1] assert axis in region lower, locV, upper = region[axis] newLower, newUpper = lower, upper if val < locV: newLower = val ratio = (val - locV) / (lower - locV) elif locV < val: newUpper = val ratio = (val - locV) / (upper - locV) else: # val == locV # Can't split box in this direction. continue if ratio > bestRatio: bestAxes = {} bestRatio = ratio if ratio == bestRatio: bestAxes[axis] = (newLower, locV, newUpper) for axis, triple in bestAxes.items(): region[axis] = triple self.supports.append(region) self._computeDeltaWeights() def _locationsToRegions(self): locations = self.locations # Compute min/max across each axis, use it as total range. # TODO Take this as input from outside? minV = {} maxV = {} for l in locations: for k, v in l.items(): minV[k] = min(v, minV.get(k, v)) maxV[k] = max(v, maxV.get(k, v)) regions = [] for loc in locations: region = {} for axis, locV in loc.items(): if locV > 0: region[axis] = (0, locV, maxV[axis]) else: region[axis] = (minV[axis], locV, 0) regions.append(region) return regions def _computeDeltaWeights(self): self.deltaWeights = [] for i, loc in enumerate(self.locations): deltaWeight = {} # Walk over previous masters now, populate deltaWeight for j, support in enumerate(self.supports[:i]): scalar = supportScalar(loc, support) if scalar: deltaWeight[j] = scalar self.deltaWeights.append(deltaWeight) def getDeltas(self, masterValues, *, round=noRound): assert len(masterValues) == len(self.deltaWeights) mapping = self.reverseMapping out = [] for i, weights in enumerate(self.deltaWeights): delta = masterValues[mapping[i]] for j, weight in weights.items(): if weight == 1: delta -= out[j] else: delta -= out[j] * weight out.append(round(delta)) return out def getDeltasAndSupports(self, items, *, round=noRound): model, items = self.getSubModel(items) return model.getDeltas(items, round=round), model.supports def getScalars(self, loc): """Return scalars for each delta, for the given location. If interpolating many master-values at the same location, this function allows speed up by fetching the scalars once and using them with interpolateFromMastersAndScalars().""" return [ supportScalar( loc, support, extrapolate=self.extrapolate, axisRanges=self.axisRanges ) for support in self.supports ] def getMasterScalars(self, targetLocation): """Return multipliers for each master, for the given location. If interpolating many master-values at the same location, this function allows speed up by fetching the scalars once and using them with interpolateFromValuesAndScalars(). Note that the scalars used in interpolateFromMastersAndScalars(), are *not* the same as the ones returned here. They are the result of getScalars().""" out = self.getScalars(targetLocation) for i, weights in reversed(list(enumerate(self.deltaWeights))): for j, weight in weights.items(): out[j] -= out[i] * weight out = [out[self.mapping[i]] for i in range(len(out))] return out @staticmethod def interpolateFromValuesAndScalars(values, scalars): """Interpolate from values and scalars coefficients. If the values are master-values, then the scalars should be fetched from getMasterScalars(). If the values are deltas, then the scalars should be fetched from getScalars(); in which case this is the same as interpolateFromDeltasAndScalars(). """ v = None assert len(values) == len(scalars) for value, scalar in zip(values, scalars): if not scalar: continue contribution = value * scalar if v is None: v = contribution else: v += contribution return v @staticmethod def interpolateFromDeltasAndScalars(deltas, scalars): """Interpolate from deltas and scalars fetched from getScalars().""" return VariationModel.interpolateFromValuesAndScalars(deltas, scalars) def interpolateFromDeltas(self, loc, deltas): """Interpolate from deltas, at location loc.""" scalars = self.getScalars(loc) return self.interpolateFromDeltasAndScalars(deltas, scalars) def interpolateFromMasters(self, loc, masterValues, *, round=noRound): """Interpolate from master-values, at location loc.""" scalars = self.getMasterScalars(loc) return self.interpolateFromValuesAndScalars(masterValues, scalars) def interpolateFromMastersAndScalars(self, masterValues, scalars, *, round=noRound): """Interpolate from master-values, and scalars fetched from getScalars(), which is useful when you want to interpolate multiple master-values with the same location.""" deltas = self.getDeltas(masterValues, round=round) return self.interpolateFromDeltasAndScalars(deltas, scalars) def piecewiseLinearMap(v, mapping): keys = mapping.keys() if not keys: return v if v in keys: return mapping[v] k = min(keys) if v < k: return v + mapping[k] - k k = max(keys) if v > k: return v + mapping[k] - k # Interpolate a = max(k for k in keys if k < v) b = min(k for k in keys if k > v) va = mapping[a] vb = mapping[b] return va + (vb - va) * (v - a) / (b - a) def main(args=None): """Normalize locations on a given designspace""" from fontTools import configLogger import argparse parser = argparse.ArgumentParser( "fonttools varLib.models", description=main.__doc__, ) parser.add_argument( "--loglevel", metavar="LEVEL", default="INFO", help="Logging level (defaults to INFO)", ) group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-d", "--designspace", metavar="DESIGNSPACE", type=str) group.add_argument( "-l", "--locations", metavar="LOCATION", nargs="+", help="Master locations as comma-separate coordinates. One must be all zeros.", ) args = parser.parse_args(args) configLogger(level=args.loglevel) from pprint import pprint if args.designspace: from fontTools.designspaceLib import DesignSpaceDocument doc = DesignSpaceDocument() doc.read(args.designspace) locs = [s.location for s in doc.sources] print("Original locations:") pprint(locs) doc.normalize() print("Normalized locations:") locs = [s.location for s in doc.sources] pprint(locs) else: axes = [chr(c) for c in range(ord("A"), ord("Z") + 1)] locs = [ dict(zip(axes, (float(v) for v in s.split(",")))) for s in args.locations ] model = VariationModel(locs) print("Sorted locations:") pprint(model.locations) print("Supports:") pprint(model.supports) if __name__ == "__main__": import doctest, sys if len(sys.argv) > 1: sys.exit(main()) sys.exit(doctest.testmod().failed)