"""Base class for directed graphs.""" from copy import deepcopy from functools import cached_property import networkx as nx from networkx import convert from networkx.classes.coreviews import AdjacencyView from networkx.classes.graph import Graph from networkx.classes.reportviews import ( DiDegreeView, InDegreeView, InEdgeView, OutDegreeView, OutEdgeView, ) from networkx.exception import NetworkXError __all__ = ["DiGraph"] class _CachedPropertyResetterAdjAndSucc: """Data Descriptor class that syncs and resets cached properties adj and succ The cached properties `adj` and `succ` are reset whenever `_adj` or `_succ` are set to new objects. In addition, the attributes `_succ` and `_adj` are synced so these two names point to the same object. This object sits on a class and ensures that any instance of that class clears its cached properties "succ" and "adj" whenever the underlying instance attributes "_succ" or "_adj" are set to a new object. It only affects the set process of the obj._adj and obj._succ attribute. All get/del operations act as they normally would. For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html """ def __set__(self, obj, value): od = obj.__dict__ od["_adj"] = value od["_succ"] = value # reset cached properties if "adj" in od: del od["adj"] if "succ" in od: del od["succ"] class _CachedPropertyResetterPred: """Data Descriptor class for _pred that resets ``pred`` cached_property when needed This assumes that the ``cached_property`` ``G.pred`` should be reset whenever ``G._pred`` is set to a new value. This object sits on a class and ensures that any instance of that class clears its cached property "pred" whenever the underlying instance attribute "_pred" is set to a new object. It only affects the set process of the obj._pred attribute. All get/del operations act as they normally would. For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html """ def __set__(self, obj, value): od = obj.__dict__ od["_pred"] = value if "pred" in od: del od["pred"] class DiGraph(Graph): """ Base class for directed graphs. A DiGraph stores nodes and edges with optional data, or attributes. DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. By convention `None` is not used as a node. Edges are represented as links between nodes with optional key/value attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy sparse matrix, or PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- Graph MultiGraph MultiDiGraph Examples -------- Create an empty graph structure (a "null graph") with no nodes and no edges. >>> G = nx.DiGraph() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node(1) Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). >>> G.add_nodes_from([2, 3]) >>> G.add_nodes_from(range(100, 110)) >>> H = nx.path_graph(10) >>> G.add_nodes_from(H) In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. >>> G.add_node(H) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge(1, 2) a list of edges, >>> G.add_edges_from([(1, 2), (1, 3)]) or a collection of edges, >>> G.add_edges_from(H.edges) If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. >>> G = nx.DiGraph(day="Friday") >>> G.graph {'day': 'Friday'} Add node attributes using add_node(), add_nodes_from() or G.nodes >>> G.add_node(1, time="5pm") >>> G.add_nodes_from([3], time="2pm") >>> G.nodes[1] {'time': '5pm'} >>> G.nodes[1]["room"] = 714 >>> del G.nodes[1]["room"] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edges. >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3, 4), (4, 5)], color="red") >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) >>> G[1][2]["weight"] = 4.7 >>> G.edges[1, 2]["weight"] = 4 Warning: we protect the graph data structure by making `G.edges[1, 2]` a read-only dict-like structure. However, you can assign to attributes in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change data attributes: `G.edges[1, 2]['weight'] = 4` (For multigraphs: `MG.edges[u, v, key][name] = value`). **Shortcuts:** Many common graph features allow python syntax to speed reporting. >>> 1 in G # check if node in graph True >>> [n for n in G if n < 3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 Often the best way to traverse all edges of a graph is via the neighbors. The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()` >>> for n, nbrsdict in G.adjacency(): ... for nbr, eattr in nbrsdict.items(): ... if "weight" in eattr: ... # Do something useful with the edges ... pass But the edges reporting object is often more convenient: >>> for u, v, weight in G.edges(data="weight"): ... if weight is not None: ... # Do something useful with the edges ... pass **Reporting:** Simple graph information is obtained using object-attributes and methods. Reporting usually provides views instead of containers to reduce memory usage. The views update as the graph is updated similarly to dict-views. The objects `nodes`, `edges` and `adj` provide access to data attributes via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration (e.g. `nodes.items()`, `nodes.data('color')`, `nodes.data('color', default='blue')` and similarly for `edges`) Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. For details on these and other miscellaneous methods, see below. **Subclasses (Advanced):** The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory. node_dict_factory : function, (default: dict) Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object node_attr_dict_factory: function, (default: dict) Factory function to be used to create the node attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object adjlist_outer_dict_factory : function, (default: dict) Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. adjlist_inner_dict_factory : function, optional (default: dict) Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object edge_attr_dict_factory : function, optional (default: dict) Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. graph_attr_dict_factory : function, (default: dict) Factory function to be used to create the graph attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. Typically, if your extension doesn't impact the data structure all methods will inherited without issue except: `to_directed/to_undirected`. By default these methods create a DiGraph/Graph class and you probably want them to create your extension of a DiGraph/Graph. To facilitate this we define two class variables that you can set in your subclass. to_directed_class : callable, (default: DiGraph or MultiDiGraph) Class to create a new graph structure in the `to_directed` method. If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. to_undirected_class : callable, (default: Graph or MultiGraph) Class to create a new graph structure in the `to_undirected` method. If `None`, a NetworkX class (Graph or MultiGraph) is used. **Subclassing Example** Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. >>> class ThinGraph(nx.Graph): ... all_edge_dict = {"weight": 1} ... ... def single_edge_dict(self): ... return self.all_edge_dict ... ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2, 1) >>> G[2][1] {'weight': 1} >>> G.add_edge(2, 2) >>> G[2][1] is G[2][2] True """ _adj = _CachedPropertyResetterAdjAndSucc() # type: ignore[assignment] _succ = _adj # type: ignore[has-type] _pred = _CachedPropertyResetterPred() def __init__(self, incoming_graph_data=None, **attr): """Initialize a graph with edges, name, or graph attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a 2D NumPy array, a SciPy sparse array, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- convert Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name="my graph") >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges >>> G = nx.Graph(e) Arbitrary graph attribute pairs (key=value) may be assigned >>> G = nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} """ self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes self._node = self.node_dict_factory() # dictionary for node attr # We store two adjacency lists: # the predecessors of node n are stored in the dict self._pred # the successors of node n are stored in the dict self._succ=self._adj self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict successor self._pred = self.adjlist_outer_dict_factory() # predecessor # Note: self._succ = self._adj # successor self.__networkx_cache__ = {} # attempt to load graph with data if incoming_graph_data is not None: convert.to_networkx_graph(incoming_graph_data, create_using=self) # load graph attributes (must be after convert) self.graph.update(attr) @cached_property def adj(self): """Graph adjacency object holding the neighbors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.adj behaves like a dict. Useful idioms include `for nbr, datadict in G.adj[n].items():`. The neighbor information is also provided by subscripting the graph. So `for nbr, foovalue in G[node].data('foo', default=1):` works. For directed graphs, `G.adj` holds outgoing (successor) info. """ return AdjacencyView(self._succ) @cached_property def succ(self): """Graph adjacency object holding the successors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.succ behaves like a dict. Useful idioms include `for nbr, datadict in G.succ[n].items():`. A data-view not provided by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):` and a default can be set via a `default` argument to the `data` method. The neighbor information is also provided by subscripting the graph. So `for nbr, foovalue in G[node].data('foo', default=1):` works. For directed graphs, `G.adj` is identical to `G.succ`. """ return AdjacencyView(self._succ) @cached_property def pred(self): """Graph adjacency object holding the predecessors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.pred behaves like a dict. Useful idioms include `for nbr, datadict in G.pred[n].items():`. A data-view not provided by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):` A default can be set via a `default` argument to the `data` method. """ return AdjacencyView(self._pred) def add_node(self, node_for_adding, **attr): """Add a single node `node_for_adding` and update node attributes. Parameters ---------- node_for_adding : node A node can be any hashable Python object except None. attr : keyword arguments, optional Set or change node attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 Use keywords set/change node attributes: >>> G.add_node(1, size=10) >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649)) Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. """ if node_for_adding not in self._succ: if node_for_adding is None: raise ValueError("None cannot be a node") self._succ[node_for_adding] = self.adjlist_inner_dict_factory() self._pred[node_for_adding] = self.adjlist_inner_dict_factory() attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory() attr_dict.update(attr) else: # update attr even if node already exists self._node[node_for_adding].update(attr) nx._clear_cache(self) def add_nodes_from(self, nodes_for_adding, **attr): """Add multiple nodes. Parameters ---------- nodes_for_adding : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. See Also -------- add_node Notes ----- When adding nodes from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_nodes)`, and pass this object to `G.add_nodes_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11 Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) >>> # wrong way - will raise RuntimeError >>> # G.add_nodes_from(n + 1 for n in G.nodes) >>> # correct way >>> G.add_nodes_from(list(n + 1 for n in G.nodes)) """ for n in nodes_for_adding: try: newnode = n not in self._node newdict = attr except TypeError: n, ndict = n newnode = n not in self._node newdict = attr.copy() newdict.update(ndict) if newnode: if n is None: raise ValueError("None cannot be a node") self._succ[n] = self.adjlist_inner_dict_factory() self._pred[n] = self.adjlist_inner_dict_factory() self._node[n] = self.node_attr_dict_factory() self._node[n].update(newdict) nx._clear_cache(self) def remove_node(self, n): """Remove node n. Removes the node n and all adjacent edges. Attempting to remove a nonexistent node will raise an exception. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- remove_nodes_from Examples -------- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges) [] """ try: nbrs = self._succ[n] del self._node[n] except KeyError as err: # NetworkXError if n not in self raise NetworkXError(f"The node {n} is not in the digraph.") from err for u in nbrs: del self._pred[u][n] # remove all edges n-u in digraph del self._succ[n] # remove node from succ for u in self._pred[n]: del self._succ[u][n] # remove all edges n-u in digraph del self._pred[n] # remove node from pred nx._clear_cache(self) def remove_nodes_from(self, nodes): """Remove multiple nodes. Parameters ---------- nodes : iterable container A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. See Also -------- remove_node Notes ----- When removing nodes from an iterator over the graph you are changing, a `RuntimeError` will be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_nodes)`, and pass this object to `G.remove_nodes_from`. Examples -------- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes) [] Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) >>> # this command will fail, as the graph's dict is modified during iteration >>> # G.remove_nodes_from(n for n in G.nodes if n < 2) >>> # this command will work, since the dictionary underlying graph is not modified >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2)) """ for n in nodes: try: succs = self._succ[n] del self._node[n] for u in succs: del self._pred[u][n] # remove all edges n-u in digraph del self._succ[n] # now remove node for u in self._pred[n]: del self._succ[u][n] # remove all edges n-u in digraph del self._pred[n] # now remove node except KeyError: pass # silent failure on remove nx._clear_cache(self) def add_edge(self, u_of_edge, v_of_edge, **attr): """Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. Parameters ---------- u_of_edge, v_of_edge : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edges_from : add a collection of edges Notes ----- Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default `weight`) to hold a numerical value. Examples -------- The following all add the edge e=(1, 2) to graph G: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1, 2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1, 2)]) # add edges from iterable container Associate data to edges using keywords: >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) For non-string attribute keys, use subscript notation. >>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) >>> G.edges[1, 2].update({0: 5}) """ u, v = u_of_edge, v_of_edge # add nodes if u not in self._succ: if u is None: raise ValueError("None cannot be a node") self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: if v is None: raise ValueError("None cannot be a node") self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() # add the edge datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) self._succ[u][v] = datadict self._pred[v][u] = datadict nx._clear_cache(self) def add_edges_from(self, ebunch_to_add, **attr): """Add all the edges in ebunch_to_add. Parameters ---------- ebunch_to_add : container of edges Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges Notes ----- Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. When adding edges from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_edges)`, and pass this object to `G.add_edges_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 Associate data to edges >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) >>> # Grow graph by one new node, adding edges to all existing nodes. >>> # wrong way - will raise RuntimeError >>> # G.add_edges_from(((5, n) for n in G.nodes)) >>> # right way - note that there will be no self-edge for node 5 >>> G.add_edges_from(list((5, n) for n in G.nodes)) """ for e in ebunch_to_add: ne = len(e) if ne == 3: u, v, dd = e elif ne == 2: u, v = e dd = {} else: raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.") if u not in self._succ: if u is None: raise ValueError("None cannot be a node") self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: if v is None: raise ValueError("None cannot be a node") self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) datadict.update(dd) self._succ[u][v] = datadict self._pred[v][u] = datadict nx._clear_cache(self) def remove_edge(self, u, v): """Remove the edge between u and v. Parameters ---------- u, v : nodes Remove the edge between nodes u and v. Raises ------ NetworkXError If there is not an edge between u and v. See Also -------- remove_edges_from : remove a collection of edges Examples -------- >>> G = nx.Graph() # or DiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.remove_edge(0, 1) >>> e = (1, 2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2, 3, {"weight": 7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple """ try: del self._succ[u][v] del self._pred[v][u] except KeyError as err: raise NetworkXError(f"The edge {u}-{v} not in graph.") from err nx._clear_cache(self) def remove_edges_from(self, ebunch): """Remove all edges specified in ebunch. Parameters ---------- ebunch: list or container of edge tuples Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u, v) edge between u and v. - 3-tuples (u, v, k) where k is ignored. See Also -------- remove_edge : remove a single edge Notes ----- Will fail silently if an edge in ebunch is not in the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch = [(1, 2), (2, 3)] >>> G.remove_edges_from(ebunch) """ for e in ebunch: u, v = e[:2] # ignore edge data if u in self._succ and v in self._succ[u]: del self._succ[u][v] del self._pred[v][u] nx._clear_cache(self) def has_successor(self, u, v): """Returns True if node u has successor v. This is true if graph has the edge u->v. """ return u in self._succ and v in self._succ[u] def has_predecessor(self, u, v): """Returns True if node u has predecessor v. This is true if graph has the edge u<-v. """ return u in self._pred and v in self._pred[u] def successors(self, n): """Returns an iterator over successor nodes of n. A successor of n is a node m such that there exists a directed edge from n to m. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- predecessors Notes ----- neighbors() and successors() are the same. """ try: return iter(self._succ[n]) except KeyError as err: raise NetworkXError(f"The node {n} is not in the digraph.") from err # digraph definitions neighbors = successors def predecessors(self, n): """Returns an iterator over predecessor nodes of n. A predecessor of n is a node m such that there exists a directed edge from m to n. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- successors """ try: return iter(self._pred[n]) except KeyError as err: raise NetworkXError(f"The node {n} is not in the digraph.") from err @cached_property def edges(self): """An OutEdgeView of the DiGraph as G.edges or G.edges(). edges(self, nbunch=None, data=False, default=None) The OutEdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, `G.edges[u, v]['color']` provides the value of the color attribute for edge `(u, v)` while `for (u, v, c) in G.edges.data('color', default='red'):` iterates through all the edges yielding the color attribute with default `'red'` if no color attribute exists. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges from these nodes. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v). default : value, optional (default=None) Value used for edges that don't have the requested attribute. Only relevant if data is not True or False. Returns ------- edges : OutEdgeView A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as `edges[u, v]['foo']`. See Also -------- in_edges, out_edges Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2]) >>> G.add_edge(2, 3, weight=5) >>> [e for e in G.edges] [(0, 1), (1, 2), (2, 3)] >>> G.edges.data() # default data is {} (empty dict) OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) >>> G.edges.data("weight", default=1) OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) >>> G.edges([0, 2]) # only edges originating from these nodes OutEdgeDataView([(0, 1), (2, 3)]) >>> G.edges(0) # only edges from node 0 OutEdgeDataView([(0, 1)]) """ return OutEdgeView(self) # alias out_edges to edges @cached_property def out_edges(self): return OutEdgeView(self) out_edges.__doc__ = edges.__doc__ @cached_property def in_edges(self): """A view of the in edges of the graph as G.in_edges or G.in_edges(). in_edges(self, nbunch=None, data=False, default=None): Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v). default : value, optional (default=None) Value used for edges that don't have the requested attribute. Only relevant if data is not True or False. Returns ------- in_edges : InEdgeView or InEdgeDataView A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as `edges[u, v]['foo']`. Examples -------- >>> G = nx.DiGraph() >>> G.add_edge(1, 2, color="blue") >>> G.in_edges() InEdgeView([(1, 2)]) >>> G.in_edges(nbunch=2) InEdgeDataView([(1, 2)]) See Also -------- edges """ return InEdgeView(self) @cached_property def degree(self): """A DegreeView for the Graph as G.degree or G.degree(). The node degree is the number of edges adjacent to the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iterator for (node, degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- DiDegreeView or int If multiple nodes are requested (the default), returns a `DiDegreeView` mapping nodes to their degree. If a single node is requested, returns the degree of the node as an integer. See Also -------- in_degree, out_degree Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.degree(0) # node 0 with degree 1 1 >>> list(G.degree([0, 1, 2])) [(0, 1), (1, 2), (2, 2)] """ return DiDegreeView(self) @cached_property def in_degree(self): """An InDegreeView for (node, in_degree) or in_degree for single node. The node in_degree is the number of edges pointing to the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iteration over (node, in_degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- If a single node is requested deg : int In-degree of the node OR if multiple nodes are requested nd_iter : iterator The iterator returns two-tuples of (node, in-degree). See Also -------- degree, out_degree Examples -------- >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.in_degree(0) # node 0 with degree 0 0 >>> list(G.in_degree([0, 1, 2])) [(0, 0), (1, 1), (2, 1)] """ return InDegreeView(self) @cached_property def out_degree(self): """An OutDegreeView for (node, out_degree) The node out_degree is the number of edges pointing out of the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iterator over (node, out_degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- If a single node is requested deg : int Out-degree of the node OR if multiple nodes are requested nd_iter : iterator The iterator returns two-tuples of (node, out-degree). See Also -------- degree, in_degree Examples -------- >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.out_degree(0) # node 0 with degree 1 1 >>> list(G.out_degree([0, 1, 2])) [(0, 1), (1, 1), (2, 1)] """ return OutDegreeView(self) def clear(self): """Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes) [] >>> list(G.edges) [] """ self._succ.clear() self._pred.clear() self._node.clear() self.graph.clear() nx._clear_cache(self) def clear_edges(self): """Remove all edges from the graph without altering nodes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear_edges() >>> list(G.nodes) [0, 1, 2, 3] >>> list(G.edges) [] """ for predecessor_dict in self._pred.values(): predecessor_dict.clear() for successor_dict in self._succ.values(): successor_dict.clear() nx._clear_cache(self) def is_multigraph(self): """Returns True if graph is a multigraph, False otherwise.""" return False def is_directed(self): """Returns True if graph is directed, False otherwise.""" return True def to_undirected(self, reciprocal=False, as_view=False): """Returns an undirected representation of the digraph. Parameters ---------- reciprocal : bool (optional) If True only keep edges that appear in both directions in the original digraph. as_view : bool (optional, default=False) If True return an undirected view of the original directed graph. Returns ------- G : Graph An undirected graph with the same name and nodes and with edge (u, v, data) if either (u, v, data) or (v, u, data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. See Also -------- Graph, copy, add_edge, add_edges_from Notes ----- If edges in both directions (u, v) and (v, u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html. Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method. Examples -------- >>> G = nx.path_graph(2) # or MultiGraph, etc >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> list(G2.edges) [(0, 1)] """ graph_class = self.to_undirected_class() if as_view is True: return nx.graphviews.generic_graph_view(self, graph_class) # deepcopy when not a view G = graph_class() G.graph.update(deepcopy(self.graph)) G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) if reciprocal is True: G.add_edges_from( (u, v, deepcopy(d)) for u, nbrs in self._adj.items() for v, d in nbrs.items() if v in self._pred[u] ) else: G.add_edges_from( (u, v, deepcopy(d)) for u, nbrs in self._adj.items() for v, d in nbrs.items() ) return G def reverse(self, copy=True): """Returns the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. Parameters ---------- copy : bool optional (default=True) If True, return a new DiGraph holding the reversed edges. If False, the reverse graph is created using a view of the original graph. """ if copy: H = self.__class__() H.graph.update(deepcopy(self.graph)) H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items()) H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True)) return H return nx.reverse_view(self)