""" Known facts in assumptions module. This module defines the facts between unary predicates in ``get_known_facts()``, and supports functions to generate the contents in ``sympy.assumptions.ask_generated`` file. """ from sympy.assumptions.ask import Q from sympy.assumptions.assume import AppliedPredicate from sympy.core.cache import cacheit from sympy.core.symbol import Symbol from sympy.logic.boolalg import (to_cnf, And, Not, Implies, Equivalent, Exclusive,) from sympy.logic.inference import satisfiable @cacheit def get_composite_predicates(): # To reduce the complexity of sat solver, these predicates are # transformed into the combination of primitive predicates. return { Q.real : Q.negative | Q.zero | Q.positive, Q.integer : Q.even | Q.odd, Q.nonpositive : Q.negative | Q.zero, Q.nonzero : Q.negative | Q.positive, Q.nonnegative : Q.zero | Q.positive, Q.extended_real : Q.negative_infinite | Q.negative | Q.zero | Q.positive | Q.positive_infinite, Q.extended_positive: Q.positive | Q.positive_infinite, Q.extended_negative: Q.negative | Q.negative_infinite, Q.extended_nonzero: Q.negative_infinite | Q.negative | Q.positive | Q.positive_infinite, Q.extended_nonpositive: Q.negative_infinite | Q.negative | Q.zero, Q.extended_nonnegative: Q.zero | Q.positive | Q.positive_infinite, Q.complex : Q.algebraic | Q.transcendental } @cacheit def get_known_facts(x=None): """ Facts between unary predicates. Parameters ========== x : Symbol, optional Placeholder symbol for unary facts. Default is ``Symbol('x')``. Returns ======= fact : Known facts in conjugated normal form. """ if x is None: x = Symbol('x') fact = And( # primitive predicates for extended real exclude each other. Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x), Q.positive(x), Q.positive_infinite(x)), # build complex plane Exclusive(Q.real(x), Q.imaginary(x)), Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)), # other subsets of complex Exclusive(Q.transcendental(x), Q.algebraic(x)), Equivalent(Q.real(x), Q.rational(x) | Q.irrational(x)), Exclusive(Q.irrational(x), Q.rational(x)), Implies(Q.rational(x), Q.algebraic(x)), # integers Exclusive(Q.even(x), Q.odd(x)), Implies(Q.integer(x), Q.rational(x)), Implies(Q.zero(x), Q.even(x)), Exclusive(Q.composite(x), Q.prime(x)), Implies(Q.composite(x) | Q.prime(x), Q.integer(x) & Q.positive(x)), Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)), # hermitian and antihermitian Implies(Q.real(x), Q.hermitian(x)), Implies(Q.imaginary(x), Q.antihermitian(x)), Implies(Q.zero(x), Q.hermitian(x) | Q.antihermitian(x)), # define finity and infinity, and build extended real line Exclusive(Q.infinite(x), Q.finite(x)), Implies(Q.complex(x), Q.finite(x)), Implies(Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)), # commutativity Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)), # matrices Implies(Q.orthogonal(x), Q.positive_definite(x)), Implies(Q.orthogonal(x), Q.unitary(x)), Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)), Implies(Q.unitary(x), Q.normal(x)), Implies(Q.unitary(x), Q.invertible(x)), Implies(Q.normal(x), Q.square(x)), Implies(Q.diagonal(x), Q.normal(x)), Implies(Q.positive_definite(x), Q.invertible(x)), Implies(Q.diagonal(x), Q.upper_triangular(x)), Implies(Q.diagonal(x), Q.lower_triangular(x)), Implies(Q.lower_triangular(x), Q.triangular(x)), Implies(Q.upper_triangular(x), Q.triangular(x)), Implies(Q.triangular(x), Q.upper_triangular(x) | Q.lower_triangular(x)), Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)), Implies(Q.diagonal(x), Q.symmetric(x)), Implies(Q.unit_triangular(x), Q.triangular(x)), Implies(Q.invertible(x), Q.fullrank(x)), Implies(Q.invertible(x), Q.square(x)), Implies(Q.symmetric(x), Q.square(x)), Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)), Equivalent(Q.invertible(x), ~Q.singular(x)), Implies(Q.integer_elements(x), Q.real_elements(x)), Implies(Q.real_elements(x), Q.complex_elements(x)), ) return fact def generate_known_facts_dict(keys, fact): """ Computes and returns a dictionary which contains the relations between unary predicates. Each key is a predicate, and item is two groups of predicates. First group contains the predicates which are implied by the key, and second group contains the predicates which are rejected by the key. All predicates in *keys* and *fact* must be unary and have same placeholder symbol. Parameters ========== keys : list of AppliedPredicate instances. fact : Fact between predicates in conjugated normal form. Examples ======== >>> from sympy import Q, And, Implies >>> from sympy.assumptions.facts import generate_known_facts_dict >>> from sympy.abc import x >>> keys = [Q.even(x), Q.odd(x), Q.zero(x)] >>> fact = And(Implies(Q.even(x), ~Q.odd(x)), ... Implies(Q.zero(x), Q.even(x))) >>> generate_known_facts_dict(keys, fact) {Q.even: ({Q.even}, {Q.odd}), Q.odd: ({Q.odd}, {Q.even, Q.zero}), Q.zero: ({Q.even, Q.zero}, {Q.odd})} """ fact_cnf = to_cnf(fact) mapping = single_fact_lookup(keys, fact_cnf) ret = {} for key, value in mapping.items(): implied = set() rejected = set() for expr in value: if isinstance(expr, AppliedPredicate): implied.add(expr.function) elif isinstance(expr, Not): pred = expr.args[0] rejected.add(pred.function) ret[key.function] = (implied, rejected) return ret @cacheit def get_known_facts_keys(): """ Return every unary predicates registered to ``Q``. This function is used to generate the keys for ``generate_known_facts_dict``. """ exclude = set() for pred in [Q.eq, Q.ne, Q.gt, Q.lt, Q.ge, Q.le]: # exclude polyadic predicates exclude.add(pred) result = [] for attr in Q.__class__.__dict__: if attr.startswith('__'): continue pred = getattr(Q, attr) if pred in exclude: continue result.append(pred) return result def single_fact_lookup(known_facts_keys, known_facts_cnf): # Return the dictionary for quick lookup of single fact mapping = {} for key in known_facts_keys: mapping[key] = {key} for other_key in known_facts_keys: if other_key != key: if ask_full_inference(other_key, key, known_facts_cnf): mapping[key].add(other_key) if ask_full_inference(~other_key, key, known_facts_cnf): mapping[key].add(~other_key) return mapping def ask_full_inference(proposition, assumptions, known_facts_cnf): """ Method for inferring properties about objects. """ if not satisfiable(And(known_facts_cnf, assumptions, proposition)): return False if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): return True return None