import math from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.codegen.rewriting import optimize from sympy.codegen.approximations import SumApprox, SeriesApprox def test_SumApprox_trivial(): x = symbols('x') expr1 = 1 + x sum_approx = SumApprox(bounds={x: (-1e-20, 1e-20)}, reltol=1e-16) apx1 = optimize(expr1, [sum_approx]) assert apx1 - 1 == 0 def test_SumApprox_monotone_terms(): x, y, z = symbols('x y z') expr1 = exp(z)*(x**2 + y**2 + 1) bnds1 = {x: (0, 1e-3), y: (100, 1000)} sum_approx_m2 = SumApprox(bounds=bnds1, reltol=1e-2) sum_approx_m5 = SumApprox(bounds=bnds1, reltol=1e-5) sum_approx_m11 = SumApprox(bounds=bnds1, reltol=1e-11) assert (optimize(expr1, [sum_approx_m2])/exp(z) - (y**2)).simplify() == 0 assert (optimize(expr1, [sum_approx_m5])/exp(z) - (y**2 + 1)).simplify() == 0 assert (optimize(expr1, [sum_approx_m11])/exp(z) - (y**2 + 1 + x**2)).simplify() == 0 def test_SeriesApprox_trivial(): x, z = symbols('x z') for factor in [1, exp(z)]: x = symbols('x') expr1 = exp(x)*factor bnds1 = {x: (-1, 1)} series_approx_50 = SeriesApprox(bounds=bnds1, reltol=0.50) series_approx_10 = SeriesApprox(bounds=bnds1, reltol=0.10) series_approx_05 = SeriesApprox(bounds=bnds1, reltol=0.05) c = (bnds1[x][1] + bnds1[x][0])/2 # 0.0 f0 = math.exp(c) # 1.0 ref_50 = f0 + x + x**2/2 ref_10 = f0 + x + x**2/2 + x**3/6 ref_05 = f0 + x + x**2/2 + x**3/6 + x**4/24 res_50 = optimize(expr1, [series_approx_50]) res_10 = optimize(expr1, [series_approx_10]) res_05 = optimize(expr1, [series_approx_05]) assert (res_50/factor - ref_50).simplify() == 0 assert (res_10/factor - ref_10).simplify() == 0 assert (res_05/factor - ref_05).simplify() == 0 max_ord3 = SeriesApprox(bounds=bnds1, reltol=0.05, max_order=3) assert optimize(expr1, [max_ord3]) == expr1