import tempfile from sympy.core.numbers import pi, Rational from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.trigonometric import (cos, sin, sinc) from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.assumptions import assuming, Q from sympy.external import import_module from sympy.printing.codeprinter import ccode from sympy.codegen.matrix_nodes import MatrixSolve from sympy.codegen.cfunctions import log2, exp2, expm1, log1p from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.scipy_nodes import cosm1, powm1 from sympy.codegen.rewriting import ( optimize, cosm1_opt, log2_opt, exp2_opt, expm1_opt, log1p_opt, powm1_opt, optims_c99, create_expand_pow_optimization, matinv_opt, logaddexp_opt, logaddexp2_opt, optims_numpy, optims_scipy, sinc_opts, FuncMinusOneOptim ) from sympy.testing.pytest import XFAIL, skip from sympy.utilities import lambdify from sympy.utilities._compilation import compile_link_import_strings, has_c from sympy.utilities._compilation.util import may_xfail cython = import_module('cython') numpy = import_module('numpy') scipy = import_module('scipy') def test_log2_opt(): x = Symbol('x') expr1 = 7*log(3*x + 5)/(log(2)) opt1 = optimize(expr1, [log2_opt]) assert opt1 == 7*log2(3*x + 5) assert opt1.rewrite(log) == expr1 expr2 = 3*log(5*x + 7)/(13*log(2)) opt2 = optimize(expr2, [log2_opt]) assert opt2 == 3*log2(5*x + 7)/13 assert opt2.rewrite(log) == expr2 expr3 = log(x)/log(2) opt3 = optimize(expr3, [log2_opt]) assert opt3 == log2(x) assert opt3.rewrite(log) == expr3 expr4 = log(x)/log(2) + log(x+1) opt4 = optimize(expr4, [log2_opt]) assert opt4 == log2(x) + log(2)*log2(x+1) assert opt4.rewrite(log) == expr4 expr5 = log(17) opt5 = optimize(expr5, [log2_opt]) assert opt5 == expr5 expr6 = log(x + 3)/log(2) opt6 = optimize(expr6, [log2_opt]) assert str(opt6) == 'log2(x + 3)' assert opt6.rewrite(log) == expr6 def test_exp2_opt(): x = Symbol('x') expr1 = 1 + 2**x opt1 = optimize(expr1, [exp2_opt]) assert opt1 == 1 + exp2(x) assert opt1.rewrite(Pow) == expr1 expr2 = 1 + 3**x assert expr2 == optimize(expr2, [exp2_opt]) def test_expm1_opt(): x = Symbol('x') expr1 = exp(x) - 1 opt1 = optimize(expr1, [expm1_opt]) assert expm1(x) - opt1 == 0 assert opt1.rewrite(exp) == expr1 expr2 = 3*exp(x) - 3 opt2 = optimize(expr2, [expm1_opt]) assert 3*expm1(x) == opt2 assert opt2.rewrite(exp) == expr2 expr3 = 3*exp(x) - 5 opt3 = optimize(expr3, [expm1_opt]) assert 3*expm1(x) - 2 == opt3 assert opt3.rewrite(exp) == expr3 expm1_opt_non_opportunistic = FuncMinusOneOptim(exp, expm1, opportunistic=False) assert expr3 == optimize(expr3, [expm1_opt_non_opportunistic]) assert opt1 == optimize(expr1, [expm1_opt_non_opportunistic]) assert opt2 == optimize(expr2, [expm1_opt_non_opportunistic]) expr4 = 3*exp(x) + log(x) - 3 opt4 = optimize(expr4, [expm1_opt]) assert 3*expm1(x) + log(x) == opt4 assert opt4.rewrite(exp) == expr4 expr5 = 3*exp(2*x) - 3 opt5 = optimize(expr5, [expm1_opt]) assert 3*expm1(2*x) == opt5 assert opt5.rewrite(exp) == expr5 expr6 = (2*exp(x) + 1)/(exp(x) + 1) + 1 opt6 = optimize(expr6, [expm1_opt]) assert opt6.count_ops() <= expr6.count_ops() def ev(e): return e.subs(x, 3).evalf() assert abs(ev(expr6) - ev(opt6)) < 1e-15 y = Symbol('y') expr7 = (2*exp(x) - 1)/(1 - exp(y)) - 1/(1-exp(y)) opt7 = optimize(expr7, [expm1_opt]) assert -2*expm1(x)/expm1(y) == opt7 assert (opt7.rewrite(exp) - expr7).factor() == 0 expr8 = (1+exp(x))**2 - 4 opt8 = optimize(expr8, [expm1_opt]) tgt8a = (exp(x) + 3)*expm1(x) tgt8b = 2*expm1(x) + expm1(2*x) # Both tgt8a & tgt8b seem to give full precision (~16 digits for double) # for x=1e-7 (compare with expr8 which only achieves ~8 significant digits). # If we can show that either tgt8a or tgt8b is preferable, we can # change this test to ensure the preferable version is returned. assert (tgt8a - tgt8b).rewrite(exp).factor() == 0 assert opt8 in (tgt8a, tgt8b) assert (opt8.rewrite(exp) - expr8).factor() == 0 expr9 = sin(expr8) opt9 = optimize(expr9, [expm1_opt]) tgt9a = sin(tgt8a) tgt9b = sin(tgt8b) assert opt9 in (tgt9a, tgt9b) assert (opt9.rewrite(exp) - expr9.rewrite(exp)).factor().is_zero def test_expm1_two_exp_terms(): x, y = map(Symbol, 'x y'.split()) expr1 = exp(x) + exp(y) - 2 opt1 = optimize(expr1, [expm1_opt]) assert opt1 == expm1(x) + expm1(y) def test_cosm1_opt(): x = Symbol('x') expr1 = cos(x) - 1 opt1 = optimize(expr1, [cosm1_opt]) assert cosm1(x) - opt1 == 0 assert opt1.rewrite(cos) == expr1 expr2 = 3*cos(x) - 3 opt2 = optimize(expr2, [cosm1_opt]) assert 3*cosm1(x) == opt2 assert opt2.rewrite(cos) == expr2 expr3 = 3*cos(x) - 5 opt3 = optimize(expr3, [cosm1_opt]) assert 3*cosm1(x) - 2 == opt3 assert opt3.rewrite(cos) == expr3 cosm1_opt_non_opportunistic = FuncMinusOneOptim(cos, cosm1, opportunistic=False) assert expr3 == optimize(expr3, [cosm1_opt_non_opportunistic]) assert opt1 == optimize(expr1, [cosm1_opt_non_opportunistic]) assert opt2 == optimize(expr2, [cosm1_opt_non_opportunistic]) expr4 = 3*cos(x) + log(x) - 3 opt4 = optimize(expr4, [cosm1_opt]) assert 3*cosm1(x) + log(x) == opt4 assert opt4.rewrite(cos) == expr4 expr5 = 3*cos(2*x) - 3 opt5 = optimize(expr5, [cosm1_opt]) assert 3*cosm1(2*x) == opt5 assert opt5.rewrite(cos) == expr5 expr6 = 2 - 2*cos(x) opt6 = optimize(expr6, [cosm1_opt]) assert -2*cosm1(x) == opt6 assert opt6.rewrite(cos) == expr6 def test_cosm1_two_cos_terms(): x, y = map(Symbol, 'x y'.split()) expr1 = cos(x) + cos(y) - 2 opt1 = optimize(expr1, [cosm1_opt]) assert opt1 == cosm1(x) + cosm1(y) def test_expm1_cosm1_mixed(): x = Symbol('x') expr1 = exp(x) + cos(x) - 2 opt1 = optimize(expr1, [expm1_opt, cosm1_opt]) assert opt1 == cosm1(x) + expm1(x) def _check_num_lambdify(expr, opt, val_subs, approx_ref, lambdify_kw=None, poorness=1e10): """ poorness=1e10 signifies that `expr` loses precision of at least ten decimal digits. """ num_ref = expr.subs(val_subs).evalf() eps = numpy.finfo(numpy.float64).eps assert abs(num_ref - approx_ref) < approx_ref*eps f1 = lambdify(list(val_subs.keys()), opt, **(lambdify_kw or {})) args_float = tuple(map(float, val_subs.values())) num_err1 = abs(f1(*args_float) - approx_ref) assert num_err1 < abs(num_ref*eps) f2 = lambdify(list(val_subs.keys()), expr, **(lambdify_kw or {})) num_err2 = abs(f2(*args_float) - approx_ref) assert num_err2 > abs(num_ref*eps*poorness) # this only ensures that the *test* works as intended def test_cosm1_apart(): x = Symbol('x') expr1 = 1/cos(x) - 1 opt1 = optimize(expr1, [cosm1_opt]) assert opt1 == -cosm1(x)/cos(x) if scipy: _check_num_lambdify(expr1, opt1, {x: S(10)**-30}, 5e-61, lambdify_kw={"modules": 'scipy'}) expr2 = 2/cos(x) - 2 opt2 = optimize(expr2, optims_scipy) assert opt2 == -2*cosm1(x)/cos(x) if scipy: _check_num_lambdify(expr2, opt2, {x: S(10)**-30}, 1e-60, lambdify_kw={"modules": 'scipy'}) expr3 = pi/cos(3*x) - pi opt3 = optimize(expr3, [cosm1_opt]) assert opt3 == -pi*cosm1(3*x)/cos(3*x) if scipy: _check_num_lambdify(expr3, opt3, {x: S(10)**-30/3}, float(5e-61*pi), lambdify_kw={"modules": 'scipy'}) def test_powm1(): args = x, y = map(Symbol, "xy") expr1 = x**y - 1 opt1 = optimize(expr1, [powm1_opt]) assert opt1 == powm1(x, y) for arg in args: assert expr1.diff(arg) == opt1.diff(arg) if scipy and tuple(map(int, scipy.version.version.split('.')[:3])) >= (1, 10, 0): subs1_a = {x: Rational(*(1.0+1e-13).as_integer_ratio()), y: pi} ref1_f64_a = 3.139081648208105e-13 _check_num_lambdify(expr1, opt1, subs1_a, ref1_f64_a, lambdify_kw={"modules": 'scipy'}, poorness=10**11) subs1_b = {x: pi, y: Rational(*(1e-10).as_integer_ratio())} ref1_f64_b = 1.1447298859149205e-10 _check_num_lambdify(expr1, opt1, subs1_b, ref1_f64_b, lambdify_kw={"modules": 'scipy'}, poorness=10**9) def test_log1p_opt(): x = Symbol('x') expr1 = log(x + 1) opt1 = optimize(expr1, [log1p_opt]) assert log1p(x) - opt1 == 0 assert opt1.rewrite(log) == expr1 expr2 = log(3*x + 3) opt2 = optimize(expr2, [log1p_opt]) assert log1p(x) + log(3) == opt2 assert (opt2.rewrite(log) - expr2).simplify() == 0 expr3 = log(2*x + 1) opt3 = optimize(expr3, [log1p_opt]) assert log1p(2*x) - opt3 == 0 assert opt3.rewrite(log) == expr3 expr4 = log(x+3) opt4 = optimize(expr4, [log1p_opt]) assert str(opt4) == 'log(x + 3)' def test_optims_c99(): x = Symbol('x') expr1 = 2**x + log(x)/log(2) + log(x + 1) + exp(x) - 1 opt1 = optimize(expr1, optims_c99).simplify() assert opt1 == exp2(x) + log2(x) + log1p(x) + expm1(x) assert opt1.rewrite(exp).rewrite(log).rewrite(Pow) == expr1 expr2 = log(x)/log(2) + log(x + 1) opt2 = optimize(expr2, optims_c99) assert opt2 == log2(x) + log1p(x) assert opt2.rewrite(log) == expr2 expr3 = log(x)/log(2) + log(17*x + 17) opt3 = optimize(expr3, optims_c99) delta3 = opt3 - (log2(x) + log(17) + log1p(x)) assert delta3 == 0 assert (opt3.rewrite(log) - expr3).simplify() == 0 expr4 = 2**x + 3*log(5*x + 7)/(13*log(2)) + 11*exp(x) - 11 + log(17*x + 17) opt4 = optimize(expr4, optims_c99).simplify() delta4 = opt4 - (exp2(x) + 3*log2(5*x + 7)/13 + 11*expm1(x) + log(17) + log1p(x)) assert delta4 == 0 assert (opt4.rewrite(exp).rewrite(log).rewrite(Pow) - expr4).simplify() == 0 expr5 = 3*exp(2*x) - 3 opt5 = optimize(expr5, optims_c99) delta5 = opt5 - 3*expm1(2*x) assert delta5 == 0 assert opt5.rewrite(exp) == expr5 expr6 = exp(2*x) - 3 opt6 = optimize(expr6, optims_c99) assert opt6 in (expm1(2*x) - 2, expr6) # expm1(2*x) - 2 is not better or worse expr7 = log(3*x + 3) opt7 = optimize(expr7, optims_c99) delta7 = opt7 - (log(3) + log1p(x)) assert delta7 == 0 assert (opt7.rewrite(log) - expr7).simplify() == 0 expr8 = log(2*x + 3) opt8 = optimize(expr8, optims_c99) assert opt8 == expr8 def test_create_expand_pow_optimization(): cc = lambda x: ccode( optimize(x, [create_expand_pow_optimization(4)])) x = Symbol('x') assert cc(x**4) == 'x*x*x*x' assert cc(x**4 + x**2) == 'x*x + x*x*x*x' assert cc(x**5 + x**4) == 'pow(x, 5) + x*x*x*x' assert cc(sin(x)**4) == 'pow(sin(x), 4)' # gh issue 15335 assert cc(x**(-4)) == '1.0/(x*x*x*x)' assert cc(x**(-5)) == 'pow(x, -5)' assert cc(-x**4) == '-(x*x*x*x)' assert cc(x**4 - x**2) == '-(x*x) + x*x*x*x' i = Symbol('i', integer=True) assert cc(x**i - x**2) == 'pow(x, i) - (x*x)' y = Symbol('y', real=True) assert cc(Abs(exp(y**4))) == "exp(y*y*y*y)" # gh issue 20753 cc2 = lambda x: ccode(optimize(x, [create_expand_pow_optimization( 4, base_req=lambda b: b.is_Function)])) assert cc2(x**3 + sin(x)**3) == "pow(x, 3) + sin(x)*sin(x)*sin(x)" def test_matsolve(): n = Symbol('n', integer=True) A = MatrixSymbol('A', n, n) x = MatrixSymbol('x', n, 1) with assuming(Q.fullrank(A)): assert optimize(A**(-1) * x, [matinv_opt]) == MatrixSolve(A, x) assert optimize(A**(-1) * x + x, [matinv_opt]) == MatrixSolve(A, x) + x def test_logaddexp_opt(): x, y = map(Symbol, 'x y'.split()) expr1 = log(exp(x) + exp(y)) opt1 = optimize(expr1, [logaddexp_opt]) assert logaddexp(x, y) - opt1 == 0 assert logaddexp(y, x) - opt1 == 0 assert opt1.rewrite(log) == expr1 def test_logaddexp2_opt(): x, y = map(Symbol, 'x y'.split()) expr1 = log(2**x + 2**y)/log(2) opt1 = optimize(expr1, [logaddexp2_opt]) assert logaddexp2(x, y) - opt1 == 0 assert logaddexp2(y, x) - opt1 == 0 assert opt1.rewrite(log) == expr1 def test_sinc_opts(): def check(d): for k, v in d.items(): assert optimize(k, sinc_opts) == v x = Symbol('x') check({ sin(x)/x : sinc(x), sin(2*x)/(2*x) : sinc(2*x), sin(3*x)/x : 3*sinc(3*x), x*sin(x) : x*sin(x) }) y = Symbol('y') check({ sin(x*y)/(x*y) : sinc(x*y), y*sin(x/y)/x : sinc(x/y), sin(sin(x))/sin(x) : sinc(sin(x)), sin(3*sin(x))/sin(x) : 3*sinc(3*sin(x)), sin(x)/y : sin(x)/y }) def test_optims_numpy(): def check(d): for k, v in d.items(): assert optimize(k, optims_numpy) == v x = Symbol('x') check({ sin(2*x)/(2*x) + exp(2*x) - 1: sinc(2*x) + expm1(2*x), log(x+3)/log(2) + log(x**2 + 1): log1p(x**2) + log2(x+3) }) @XFAIL # room for improvement, ideally this test case should pass. def test_optims_numpy_TODO(): def check(d): for k, v in d.items(): assert optimize(k, optims_numpy) == v x, y = map(Symbol, 'x y'.split()) check({ log(x*y)*sin(x*y)*log(x*y+1)/(log(2)*x*y): log2(x*y)*sinc(x*y)*log1p(x*y), exp(x*sin(y)/y) - 1: expm1(x*sinc(y)) }) @may_xfail def test_compiled_ccode_with_rewriting(): if not cython: skip("cython not installed.") if not has_c(): skip("No C compiler found.") x = Symbol('x') about_two = 2**(58/S(117))*3**(97/S(117))*5**(4/S(39))*7**(92/S(117))/S(30)*pi # about_two: 1.999999999999581826 unchanged = 2*exp(x) - about_two xval = S(10)**-11 ref = unchanged.subs(x, xval).n(19) # 2.0418173913673213e-11 rewritten = optimize(2*exp(x) - about_two, [expm1_opt]) # Unfortunately, we need to call ``.n()`` on our expressions before we hand them # to ``ccode``, and we need to request a large number of significant digits. # In this test, results converged for double precision when the following number # of significant digits were chosen: NUMBER_OF_DIGITS = 25 # TODO: this should ideally be automatically handled. func_c = ''' #include double func_unchanged(double x) { return %(unchanged)s; } double func_rewritten(double x) { return %(rewritten)s; } ''' % {"unchanged": ccode(unchanged.n(NUMBER_OF_DIGITS)), "rewritten": ccode(rewritten.n(NUMBER_OF_DIGITS))} func_pyx = ''' #cython: language_level=3 cdef extern double func_unchanged(double) cdef extern double func_rewritten(double) def py_unchanged(x): return func_unchanged(x) def py_rewritten(x): return func_rewritten(x) ''' with tempfile.TemporaryDirectory() as folder: mod, info = compile_link_import_strings( [('func.c', func_c), ('_func.pyx', func_pyx)], build_dir=folder, compile_kwargs={"std": 'c99'} ) err_rewritten = abs(mod.py_rewritten(1e-11) - ref) err_unchanged = abs(mod.py_unchanged(1e-11) - ref) assert 1e-27 < err_rewritten < 1e-25 # highly accurate. assert 1e-19 < err_unchanged < 1e-16 # quite poor. # Tolerances used above were determined as follows: # >>> no_opt = unchanged.subs(x, xval.evalf()).evalf() # >>> with_opt = rewritten.n(25).subs(x, 1e-11).evalf() # >>> with_opt - ref, no_opt - ref # (1.1536301877952077e-26, 1.6547074214222335e-18)