from sympy.core import Lambda, Symbol, symbols from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r, R3_c, R3_s, R2_origin from sympy.diffgeom import (Manifold, Patch, CoordSystem, Commutator, Differential, TensorProduct, WedgeProduct, BaseCovarDerivativeOp, CovarDerivativeOp, LieDerivative, covariant_order, contravariant_order, twoform_to_matrix, metric_to_Christoffel_1st, metric_to_Christoffel_2nd, metric_to_Riemann_components, metric_to_Ricci_components, intcurve_diffequ, intcurve_series) from sympy.simplify import trigsimp, simplify from sympy.functions import sqrt, atan2, sin from sympy.matrices import Matrix from sympy.testing.pytest import raises, nocache_fail from sympy.testing.pytest import warns_deprecated_sympy TP = TensorProduct def test_coordsys_transform(): # test inverse transforms p, q, r, s = symbols('p q r s') rel = {('first', 'second'): [(p, q), (q, -p)]} R2_pq = CoordSystem('first', R2_origin, [p, q], rel) R2_rs = CoordSystem('second', R2_origin, [r, s], rel) r, s = R2_rs.symbols assert R2_rs.transform(R2_pq) == Matrix([[-s], [r]]) # inverse transform impossible case a, b = symbols('a b', positive=True) rel = {('first', 'second'): [(a,), (-a,)]} R2_a = CoordSystem('first', R2_origin, [a], rel) R2_b = CoordSystem('second', R2_origin, [b], rel) # This transformation is uninvertible because there is no positive a, b satisfying a = -b with raises(NotImplementedError): R2_b.transform(R2_a) # inverse transform ambiguous case c, d = symbols('c d') rel = {('first', 'second'): [(c,), (c**2,)]} R2_c = CoordSystem('first', R2_origin, [c], rel) R2_d = CoordSystem('second', R2_origin, [d], rel) # The transform method should throw if it finds multiple inverses for a coordinate transformation. with raises(ValueError): R2_d.transform(R2_c) # test indirect transformation a, b, c, d, e, f = symbols('a, b, c, d, e, f') rel = {('C1', 'C2'): [(a, b), (2*a, 3*b)], ('C2', 'C3'): [(c, d), (3*c, 2*d)]} C1 = CoordSystem('C1', R2_origin, (a, b), rel) C2 = CoordSystem('C2', R2_origin, (c, d), rel) C3 = CoordSystem('C3', R2_origin, (e, f), rel) a, b = C1.symbols c, d = C2.symbols e, f = C3.symbols assert C2.transform(C1) == Matrix([c/2, d/3]) assert C1.transform(C3) == Matrix([6*a, 6*b]) assert C3.transform(C1) == Matrix([e/6, f/6]) assert C3.transform(C2) == Matrix([e/3, f/2]) a, b, c, d, e, f = symbols('a, b, c, d, e, f') rel = {('C1', 'C2'): [(a, b), (2*a, 3*b + 1)], ('C3', 'C2'): [(e, f), (-e - 2, 2*f)]} C1 = CoordSystem('C1', R2_origin, (a, b), rel) C2 = CoordSystem('C2', R2_origin, (c, d), rel) C3 = CoordSystem('C3', R2_origin, (e, f), rel) a, b = C1.symbols c, d = C2.symbols e, f = C3.symbols assert C2.transform(C1) == Matrix([c/2, (d - 1)/3]) assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2]) assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3]) assert C3.transform(C2) == Matrix([-e - 2, 2*f]) # old signature uses Lambda a, b, c, d, e, f = symbols('a, b, c, d, e, f') rel = {('C1', 'C2'): Lambda((a, b), (2*a, 3*b + 1)), ('C3', 'C2'): Lambda((e, f), (-e - 2, 2*f))} C1 = CoordSystem('C1', R2_origin, (a, b), rel) C2 = CoordSystem('C2', R2_origin, (c, d), rel) C3 = CoordSystem('C3', R2_origin, (e, f), rel) a, b = C1.symbols c, d = C2.symbols e, f = C3.symbols assert C2.transform(C1) == Matrix([c/2, (d - 1)/3]) assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2]) assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3]) assert C3.transform(C2) == Matrix([-e - 2, 2*f]) def test_R2(): x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True) point_r = R2_r.point([x0, y0]) point_p = R2_p.point([r0, theta0]) # r**2 = x**2 + y**2 assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0 assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p) ) == 0 assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2*r0 # polar->rect->polar == Id a, b = symbols('a b', positive=True) m = Matrix([[a], [b]]) #TODO assert m == R2_r.transform(R2_p, R2_p.transform(R2_r, [a, b])).applyfunc(simplify) assert m == R2_p.transform(R2_r, R2_r.transform(R2_p, m)).applyfunc(simplify) # deprecated method with warns_deprecated_sympy(): assert m == R2_p.coord_tuple_transform_to( R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify) def test_R3(): a, b, c = symbols('a b c', positive=True) m = Matrix([[a], [b], [c]]) assert m == R3_c.transform(R3_r, R3_r.transform(R3_c, m)).applyfunc(simplify) #TODO assert m == R3_r.transform(R3_c, R3_c.transform(R3_r, m)).applyfunc(simplify) assert m == R3_s.transform( R3_r, R3_r.transform(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_r.transform(R3_s, R3_s.transform(R3_r, m)).applyfunc(simplify) assert m == R3_s.transform( R3_c, R3_c.transform(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_c.transform(R3_s, R3_s.transform(R3_c, m)).applyfunc(simplify) with warns_deprecated_sympy(): assert m == R3_c.coord_tuple_transform_to( R3_r, R3_r.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) #TODO assert m == R3_r.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) assert m == R3_s.coord_tuple_transform_to( R3_r, R3_r.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_r.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) assert m == R3_s.coord_tuple_transform_to( R3_c, R3_c.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_c.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) def test_CoordinateSymbol(): x, y = R2_r.symbols r, theta = R2_p.symbols assert y.rewrite(R2_p) == r*sin(theta) def test_point(): x, y = symbols('x, y') p = R2_r.point([x, y]) assert p.free_symbols == {x, y} assert p.coords(R2_r) == p.coords() == Matrix([x, y]) assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)]) def test_commutator(): assert Commutator(R2.e_x, R2.e_y) == 0 assert Commutator(R2.x*R2.e_x, R2.x*R2.e_x) == 0 assert Commutator(R2.x*R2.e_x, R2.x*R2.e_y) == R2.x*R2.e_y c = Commutator(R2.e_x, R2.e_r) assert c(R2.x) == R2.y*(R2.x**2 + R2.y**2)**(-1)*sin(R2.theta) def test_differential(): xdy = R2.x*R2.dy dxdy = Differential(xdy) assert xdy.rcall(None) == xdy assert dxdy(R2.e_x, R2.e_y) == 1 assert dxdy(R2.e_x, R2.x*R2.e_y) == R2.x assert Differential(dxdy) == 0 def test_products(): assert TensorProduct( R2.dx, R2.dy)(R2.e_x, R2.e_y) == R2.dx(R2.e_x)*R2.dy(R2.e_y) == 1 assert TensorProduct(R2.dx, R2.dy)(None, R2.e_y) == R2.dx assert TensorProduct(R2.dx, R2.dy)(R2.e_x, None) == R2.dy assert TensorProduct(R2.dx, R2.dy)(R2.e_x) == R2.dy assert TensorProduct(R2.x, R2.dx) == R2.x*R2.dx assert TensorProduct( R2.e_x, R2.e_y)(R2.x, R2.y) == R2.e_x(R2.x) * R2.e_y(R2.y) == 1 assert TensorProduct(R2.e_x, R2.e_y)(None, R2.y) == R2.e_x assert TensorProduct(R2.e_x, R2.e_y)(R2.x, None) == R2.e_y assert TensorProduct(R2.e_x, R2.e_y)(R2.x) == R2.e_y assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x assert TensorProduct( R2.dx, R2.e_y)(R2.e_x, R2.y) == R2.dx(R2.e_x) * R2.e_y(R2.y) == 1 assert TensorProduct(R2.dx, R2.e_y)(None, R2.y) == R2.dx assert TensorProduct(R2.dx, R2.e_y)(R2.e_x, None) == R2.e_y assert TensorProduct(R2.dx, R2.e_y)(R2.e_x) == R2.e_y assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x assert TensorProduct( R2.e_x, R2.dy)(R2.x, R2.e_y) == R2.e_x(R2.x) * R2.dy(R2.e_y) == 1 assert TensorProduct(R2.e_x, R2.dy)(None, R2.e_y) == R2.e_x assert TensorProduct(R2.e_x, R2.dy)(R2.x, None) == R2.dy assert TensorProduct(R2.e_x, R2.dy)(R2.x) == R2.dy assert TensorProduct(R2.e_y,R2.e_x)(R2.x**2 + R2.y**2,R2.x**2 + R2.y**2) == 4*R2.x*R2.y assert WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) == 1 assert WedgeProduct(R2.e_x, R2.e_y)(R2.x, R2.y) == 1 def test_lie_derivative(): assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0 assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1 assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0 assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r) assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1 assert LieDerivative( R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0 @nocache_fail def test_covar_deriv(): ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) cvd = BaseCovarDerivativeOp(R2_r, 0, ch) assert cvd(R2.x) == 1 # This line fails if the cache is disabled: assert cvd(R2.x*R2.e_x) == R2.e_x cvd = CovarDerivativeOp(R2.x*R2.e_x, ch) assert cvd(R2.x) == R2.x assert cvd(R2.x*R2.e_x) == R2.x*R2.e_x def test_intcurve_diffequ(): t = symbols('t') start_point = R2_r.point([1, 0]) vector_field = -R2.y*R2.e_x + R2.x*R2.e_y equations, init_cond = intcurve_diffequ(vector_field, t, start_point) assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) assert str( equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' def test_helpers_and_coordinate_dependent(): one_form = R2.dr + R2.dx two_form = Differential(R2.x*R2.dr + R2.r*R2.dx) three_form = Differential( R2.y*two_form) + Differential(R2.x*Differential(R2.r*R2.dr)) metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy) metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr) misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr misform_b = R2.dr**4 misform_c = R2.dx*R2.dy twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy) twoform_not_TP = WedgeProduct(R2.dx, R2.dy) one_vector = R2.e_x + R2.e_y two_vector = TensorProduct(R2.e_x, R2.e_y) three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x) two_wp = WedgeProduct(R2.e_x,R2.e_y) assert covariant_order(one_form) == 1 assert covariant_order(two_form) == 2 assert covariant_order(three_form) == 3 assert covariant_order(two_form + metric) == 2 assert covariant_order(two_form + metric_ambig) == 2 assert covariant_order(two_form + twoform_not_sym) == 2 assert covariant_order(two_form + twoform_not_TP) == 2 assert contravariant_order(one_vector) == 1 assert contravariant_order(two_vector) == 2 assert contravariant_order(three_vector) == 3 assert contravariant_order(two_vector + two_wp) == 2 raises(ValueError, lambda: covariant_order(misform_a)) raises(ValueError, lambda: covariant_order(misform_b)) raises(ValueError, lambda: covariant_order(misform_c)) assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]]) assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]]) assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]]) raises(ValueError, lambda: twoform_to_matrix(one_form)) raises(ValueError, lambda: twoform_to_matrix(three_form)) raises(ValueError, lambda: twoform_to_matrix(metric_ambig)) raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym)) raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym)) raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym)) raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym)) def test_correct_arguments(): raises(ValueError, lambda: R2.e_x(R2.e_x)) raises(ValueError, lambda: R2.e_x(R2.dx)) raises(ValueError, lambda: Commutator(R2.e_x, R2.x)) raises(ValueError, lambda: Commutator(R2.dx, R2.e_x)) raises(ValueError, lambda: Differential(Differential(R2.e_x))) raises(ValueError, lambda: R2.dx(R2.x)) raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx)) raises(ValueError, lambda: LieDerivative(R2.x, R2.dx)) raises(ValueError, lambda: CovarDerivativeOp(R2.dx, [])) raises(ValueError, lambda: CovarDerivativeOp(R2.x, [])) a = Symbol('a') raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: contravariant_order(R2.e_x*R2.e_y)) raises(ValueError, lambda: covariant_order(R2.dx*R2.dy)) def test_simplify(): x, y = R2_r.coord_functions() dx, dy = R2_r.base_oneforms() ex, ey = R2_r.base_vectors() assert simplify(x) == x assert simplify(x*y) == x*y assert simplify(dx*dy) == dx*dy assert simplify(ex*ey) == ex*ey assert ((1-x)*dx)/(1-x)**2 == dx/(1-x) def test_issue_17917(): X = R2.x*R2.e_x - R2.y*R2.e_y Y = (R2.x**2 + R2.y**2)*R2.e_x - R2.x*R2.y*R2.e_y assert LieDerivative(X, Y).expand() == ( R2.x**2*R2.e_x - 3*R2.y**2*R2.e_x - R2.x*R2.y*R2.e_y) def test_deprecations(): m = Manifold('M', 2) p = Patch('P', m) with warns_deprecated_sympy(): CoordSystem('Car2d', p, names=['x', 'y']) with warns_deprecated_sympy(): c = CoordSystem('Car2d', p, ['x', 'y']) with warns_deprecated_sympy(): list(m.patches) with warns_deprecated_sympy(): list(c.transforms)