from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.containers import TupleKind from sympy.core.function import Lambda from sympy.core.kind import NumberKind, UndefinedKind from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.logic.boolalg import (false, true) from sympy.matrices.common import MatrixKind from sympy.matrices.dense import Matrix from sympy.polys.rootoftools import rootof from sympy.sets.contains import Contains from sympy.sets.fancysets import (ImageSet, Range) from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset, SetKind) from mpmath import mpi from sympy.core.expr import unchanged from sympy.core.relational import Eq, Ne, Le, Lt, LessThan from sympy.logic import And, Or, Xor from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy from sympy.abc import x, y, z, m, n EmptySet = S.EmptySet def test_imageset(): ints = S.Integers assert imageset(x, x - 1, S.Naturals) is S.Naturals0 assert imageset(x, x + 1, S.Naturals0) is S.Naturals assert imageset(x, abs(x), S.Naturals0) is S.Naturals0 assert imageset(x, abs(x), S.Naturals) is S.Naturals assert imageset(x, abs(x), S.Integers) is S.Naturals0 # issue 16878a r = symbols('r', real=True) assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False assert (r, r) in imageset(x, (x, x), S.Reals) assert 1 + I in imageset(x, x + I, S.Reals) assert {1} not in imageset(x, (x,), S.Reals) assert (1, 1) not in imageset(x, (x,), S.Reals) raises(TypeError, lambda: imageset(x, ints)) raises(ValueError, lambda: imageset(x, y, z, ints)) raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y)) assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints) raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints)) assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints) def f(x): return cos(x) assert imageset(f, ints) == imageset(x, cos(x), ints) f = lambda x: cos(x) assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints) assert imageset(x, 1, ints) == FiniteSet(1) assert imageset(x, y, ints) == {y} assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)} clash = Symbol('x', integer=true) assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr) in ('x0 + x', 'x + x0')) x1, x2 = symbols("x1, x2") assert imageset(lambda x, y: Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq( ImageSet(Lambda((x1, x2), x1 + x2), Interval(1, 2), Interval(2, 3))) def test_is_empty(): for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.UniversalSet]: assert s.is_empty is False assert S.EmptySet.is_empty is True def test_is_finiteset(): for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.UniversalSet]: assert s.is_finite_set is False assert S.EmptySet.is_finite_set is True assert FiniteSet(1, 2).is_finite_set is True assert Interval(1, 2).is_finite_set is False assert Interval(x, y).is_finite_set is None assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True def test_deprecated_is_EmptySet(): with warns_deprecated_sympy(): S.EmptySet.is_EmptySet with warns_deprecated_sympy(): FiniteSet(1).is_EmptySet def test_interval_arguments(): assert Interval(0, oo) == Interval(0, oo, False, True) assert Interval(0, oo).right_open is true assert Interval(-oo, 0) == Interval(-oo, 0, True, False) assert Interval(-oo, 0).left_open is true assert Interval(oo, -oo) == S.EmptySet assert Interval(oo, oo) == S.EmptySet assert Interval(-oo, -oo) == S.EmptySet assert Interval(oo, x) == S.EmptySet assert Interval(oo, oo) == S.EmptySet assert Interval(x, -oo) == S.EmptySet assert Interval(x, x) == {x} assert isinstance(Interval(1, 1), FiniteSet) e = Sum(x, (x, 1, 3)) assert isinstance(Interval(e, e), FiniteSet) assert Interval(1, 0) == S.EmptySet assert Interval(1, 1).measure == 0 assert Interval(1, 1, False, True) == S.EmptySet assert Interval(1, 1, True, False) == S.EmptySet assert Interval(1, 1, True, True) == S.EmptySet assert isinstance(Interval(0, Symbol('a')), Interval) assert Interval(Symbol('a', positive=True), 0) == S.EmptySet raises(ValueError, lambda: Interval(0, S.ImaginaryUnit)) raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False))) raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit)) raises(NotImplementedError, lambda: Interval(0, 1, And(x, y))) raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y))) raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y))) def test_interval_symbolic_end_points(): a = Symbol('a', real=True) assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3) assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a) assert Interval(0, a).contains(1) == LessThan(1, a) def test_interval_is_empty(): x, y = symbols('x, y') r = Symbol('r', real=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) nn = Symbol('nn', nonnegative=True) assert Interval(1, 2).is_empty == False assert Interval(3, 3).is_empty == False # FiniteSet assert Interval(r, r).is_empty == False # FiniteSet assert Interval(r, r + nn).is_empty == False assert Interval(x, x).is_empty == False assert Interval(1, oo).is_empty == False assert Interval(-oo, oo).is_empty == False assert Interval(-oo, 1).is_empty == False assert Interval(x, y).is_empty == None assert Interval(r, oo).is_empty == False # real implies finite assert Interval(n, 0).is_empty == False assert Interval(n, 0, left_open=True).is_empty == False assert Interval(p, 0).is_empty == True # EmptySet assert Interval(nn, 0).is_empty == None assert Interval(n, p).is_empty == False assert Interval(0, p, left_open=True).is_empty == False assert Interval(0, p, right_open=True).is_empty == False assert Interval(0, nn, left_open=True).is_empty == None assert Interval(0, nn, right_open=True).is_empty == None def test_union(): assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3) assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3) assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4) assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3) assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3) assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \ Interval(1, 3, False, True) assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3) assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3) assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \ Interval(1, 3, True) assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \ Interval(1, 3, True, True) assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \ Interval(1, 3, True) assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3) assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \ Interval(1, 3) assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \ Interval(1, 3) assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2) assert Union(S.EmptySet) == S.EmptySet assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \ Interval(0, 1) # issue #18241: x = Symbol('x') assert Union(Interval(0, 1), FiniteSet(1, x)) == Union( Interval(0, 1), FiniteSet(x)) assert unchanged(Union, Interval(0, 1), FiniteSet(2, x)) assert Interval(1, 2).union(Interval(2, 3)) == \ Interval(1, 2) + Interval(2, 3) assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3) assert Union(Set()) == Set() assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3) assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs') assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3) assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3) assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4) assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3) x = Symbol("x") y = Symbol("y") z = Symbol("z") assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \ FiniteSet(x, FiniteSet(y, z)) # Test that Intervals and FiniteSets play nicely assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3) assert Interval(1, 3, True, True) + FiniteSet(3) == \ Interval(1, 3, True, False) X = Interval(1, 3) + FiniteSet(5) Y = Interval(1, 2) + FiniteSet(3) XandY = X.intersect(Y) assert 2 in X and 3 in X and 3 in XandY assert XandY.is_subset(X) and XandY.is_subset(Y) raises(TypeError, lambda: Union(1, 2, 3)) assert X.is_iterable is False # issue 7843 assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \ FiniteSet(-sqrt(-I), sqrt(-I)) assert Union(S.Reals, S.Integers) == S.Reals def test_union_iter(): # Use Range because it is ordered u = Union(Range(3), Range(5), Range(4), evaluate=False) # Round robin assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4] def test_union_is_empty(): assert (Interval(x, y) + FiniteSet(1)).is_empty == False assert (Interval(x, y) + Interval(-x, y)).is_empty == None def test_difference(): assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True) assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True) assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True) assert Interval(1, 3, True) - Interval(2, 3, True) == \ Interval(1, 2, True, False) assert Interval(0, 2) - FiniteSet(1) == \ Union(Interval(0, 1, False, True), Interval(1, 2, True, False)) # issue #18119 assert S.Reals - FiniteSet(I) == S.Reals assert S.Reals - FiniteSet(-I, I) == S.Reals assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10) assert Interval(0, 10) - FiniteSet(1, I) == Union( Interval.Ropen(0, 1), Interval.Lopen(1, 10)) assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement( Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2), evaluate=False) assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3) assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham') assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \ FiniteSet(1, 2) assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4) assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \ Union(Interval(0, 1, False, True), FiniteSet(4)) assert -1 in S.Reals - S.Naturals def test_Complement(): A = FiniteSet(1, 3, 4) B = FiniteSet(3, 4) C = Interval(1, 3) D = Interval(1, 2) assert Complement(A, B, evaluate=False).is_iterable is True assert Complement(A, C, evaluate=False).is_iterable is True assert Complement(C, D, evaluate=False).is_iterable is None assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1) assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4) raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False))) assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True) assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1) assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)), Interval(1, 3)) == \ Union(Interval(0, 1, False, True), FiniteSet(4)) assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False) assert -1 in Complement(S.Reals, S.Naturals, evaluate=False) assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False) assert Complement(S.Integers, S.UniversalSet) == EmptySet assert S.UniversalSet.complement(S.Integers) == EmptySet assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0))) assert S.EmptySet - S.Integers == S.EmptySet assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1) assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \ Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi)) # issue 12712 assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \ Complement(FiniteSet(x, y), Interval(-10, 10)) A = FiniteSet(*symbols('a:c')) B = FiniteSet(*symbols('d:f')) assert unchanged(Complement, ProductSet(A, A), B) A2 = ProductSet(A, A) B3 = ProductSet(B, B, B) assert A2 - B3 == A2 assert B3 - A2 == B3 def test_set_operations_nonsets(): '''Tests that e.g. FiniteSet(1) * 2 raises TypeError''' ops = [ lambda a, b: a + b, lambda a, b: a - b, lambda a, b: a * b, lambda a, b: a / b, lambda a, b: a // b, lambda a, b: a | b, lambda a, b: a & b, lambda a, b: a ^ b, # FiniteSet(1) ** 2 gives a ProductSet #lambda a, b: a ** b, ] Sx = FiniteSet(x) Sy = FiniteSet(y) sets = [ {1}, FiniteSet(1), Interval(1, 2), Union(Sx, Interval(1, 2)), Intersection(Sx, Sy), Complement(Sx, Sy), ProductSet(Sx, Sy), S.EmptySet, ] nums = [0, 1, 2, S(0), S(1), S(2)] for si in sets: for ni in nums: for op in ops: raises(TypeError, lambda : op(si, ni)) raises(TypeError, lambda : op(ni, si)) raises(TypeError, lambda: si ** object()) raises(TypeError, lambda: si ** {1}) def test_complement(): assert Complement({1, 2}, {1}) == {2} assert Interval(0, 1).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True)) assert Interval(0, 1, True, False).complement(S.Reals) == \ Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True)) assert Interval(0, 1, False, True).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True)) assert Interval(0, 1, True, True).complement(S.Reals) == \ Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True)) assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet assert S.UniversalSet.complement(S.Reals) == S.EmptySet assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet assert S.EmptySet.complement(S.Reals) == S.Reals assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True), Interval(3, oo, True, True)) assert FiniteSet(0).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True)) assert (FiniteSet(5) + Interval(S.NegativeInfinity, 0)).complement(S.Reals) == \ Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True) assert FiniteSet(1, 2, 3).complement(S.Reals) == \ Interval(S.NegativeInfinity, 1, True, True) + \ Interval(1, 2, True, True) + Interval(2, 3, True, True) +\ Interval(3, S.Infinity, True, True) assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x)) assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) + Interval(0, oo, True, True) , FiniteSet(x), evaluate=False) square = Interval(0, 1) * Interval(0, 1) notsquare = square.complement(S.Reals*S.Reals) assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) assert not any( pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)]) assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)]) def test_intersect1(): assert all(S.Integers.intersection(i) is i for i in (S.Naturals, S.Naturals0)) assert all(i.intersection(S.Integers) is i for i in (S.Naturals, S.Naturals0)) s = S.Naturals0 assert S.Naturals.intersection(s) is S.Naturals assert s.intersection(S.Naturals) is S.Naturals x = Symbol('x') assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2) assert Interval(0, 2).intersect(Interval(1, 2, True)) == \ Interval(1, 2, True) assert Interval(0, 2, True).intersect(Interval(1, 2)) == \ Interval(1, 2, False, False) assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \ Interval(1, 2, False, True) assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \ Union(Interval(0, 1), Interval(2, 2)) assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2) assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x) assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \ FiniteSet('ham') assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3) assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \ Union(Interval(1, 1), Interval(2, 2)) assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \ Union(Interval(0, 1), Interval(2, 2)) assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \ S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \ S.EmptySet assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \ Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5))) assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \ Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False) assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \ Intersection({1, 2}, Interval(x, y), evaluate=False) assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \ Intersection({1, 2}, Interval(x, y), evaluate=False) # XXX: Is the real=True necessary here? # https://github.com/sympy/sympy/issues/17532 m, n = symbols('m, n', real=True) assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \ FiniteSet(m) # issue 8217 assert Intersection(FiniteSet(x), FiniteSet(y)) == \ Intersection(FiniteSet(x), FiniteSet(y), evaluate=False) assert FiniteSet(x).intersect(S.Reals) == \ Intersection(S.Reals, FiniteSet(x), evaluate=False) # tests for the intersection alias assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3) assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \ Union(Interval(1, 1), Interval(2, 2)) def test_intersection(): # iterable i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False) assert i.is_iterable assert set(i) == {S(2), S(3)} # challenging intervals x = Symbol('x', real=True) i = Intersection(Interval(0, 3), Interval(x, 6)) assert (5 in i) is False raises(TypeError, lambda: 2 in i) # Singleton special cases assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x) # Products line = Interval(0, 5) i = Intersection(line**2, line**3, evaluate=False) assert (2, 2) not in i assert (2, 2, 2) not in i raises(TypeError, lambda: list(i)) a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False) assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals]) assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet # issue 12178 assert Intersection() == S.UniversalSet # issue 16987 assert Intersection({1}, {1}, {x}) == Intersection({1}, {x}) def test_issue_9623(): n = Symbol('n') a = S.Reals b = Interval(0, oo) c = FiniteSet(n) assert Intersection(a, b, c) == Intersection(b, c) assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet def test_is_disjoint(): assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True def test_ProductSet__len__(): A = FiniteSet(1, 2) B = FiniteSet(1, 2, 3) assert ProductSet(A).__len__() == 2 assert ProductSet(A).__len__() is not S(2) assert ProductSet(A, B).__len__() == 6 assert ProductSet(A, B).__len__() is not S(6) def test_ProductSet(): # ProductSet is always a set of Tuples assert ProductSet(S.Reals) == S.Reals ** 1 assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2 assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3 assert ProductSet(S.Reals) != S.Reals assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten() assert 1 not in ProductSet(S.Reals) assert (1,) in ProductSet(S.Reals) assert 1 not in ProductSet(S.Reals, S.Reals) assert (1, 2) in ProductSet(S.Reals, S.Reals) assert (1, I) not in ProductSet(S.Reals, S.Reals) assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals) assert (1, 2, 3) in S.Reals ** 3 assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals) assert ProductSet() == FiniteSet(()) assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet # See GH-17458 for ni in range(5): Rn = ProductSet(*(S.Reals,) * ni) assert (1,) * ni in Rn assert 1 not in Rn assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals) S1 = S.Reals S2 = S.Integers x1 = pi x2 = 3 assert x1 in S1 assert x2 in S2 assert (x1, x2) in S1 * S2 S3 = S1 * S2 x3 = (x1, x2) assert x3 in S3 assert (x3, x3) in S3 * S3 assert x3 + x3 not in S3 * S3 raises(ValueError, lambda: S.Reals**-1) with warns_deprecated_sympy(): ProductSet(FiniteSet(s) for s in range(2)) raises(TypeError, lambda: ProductSet(None)) S1 = FiniteSet(1, 2) S2 = FiniteSet(3, 4) S3 = ProductSet(S1, S2) assert (S3.as_relational(x, y) == And(S1.as_relational(x), S2.as_relational(y)) == And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4)))) raises(ValueError, lambda: S3.as_relational(x)) raises(ValueError, lambda: S3.as_relational(x, 1)) raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y)) Z2 = ProductSet(S.Integers, S.Integers) assert Z2.contains((1, 2)) is S.true assert Z2.contains((1,)) is S.false assert Z2.contains(x) == Contains(x, Z2, evaluate=False) assert Z2.contains(x).subs(x, 1) is S.false assert Z2.contains((x, 1)).subs(x, 2) is S.true assert Z2.contains((x, y)) == Contains((x, y), Z2, evaluate=False) assert unchanged(Contains, (x, y), Z2) assert Contains((1, 2), Z2) is S.true def test_ProductSet_of_single_arg_is_not_arg(): assert unchanged(ProductSet, Interval(0, 1)) assert unchanged(ProductSet, ProductSet(Interval(0, 1))) def test_ProductSet_is_empty(): assert ProductSet(S.Integers, S.Reals).is_empty == False assert ProductSet(Interval(x, 1), S.Reals).is_empty == None def test_interval_subs(): a = Symbol('a', real=True) assert Interval(0, a).subs(a, 2) == Interval(0, 2) assert Interval(a, 0).subs(a, 2) == S.EmptySet def test_interval_to_mpi(): assert Interval(0, 1).to_mpi() == mpi(0, 1) assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1) assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1)) def test_set_evalf(): assert Interval(S(11)/64, S.Half).evalf() == Interval( Float('0.171875'), Float('0.5')) assert Interval(x, S.Half, right_open=True).evalf() == Interval( x, Float('0.5'), right_open=True) assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5')) assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x) def test_measure(): a = Symbol('a', real=True) assert Interval(1, 3).measure == 2 assert Interval(0, a).measure == a assert Interval(1, a).measure == a - 1 assert Union(Interval(1, 2), Interval(3, 4)).measure == 2 assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \ == 2 assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0 assert S.EmptySet.measure == 0 square = Interval(0, 10) * Interval(0, 10) offsetsquare = Interval(5, 15) * Interval(5, 15) band = Interval(-oo, oo) * Interval(2, 4) assert square.measure == offsetsquare.measure == 100 assert (square + offsetsquare).measure == 175 # there is some overlap assert (square - offsetsquare).measure == 75 assert (square * FiniteSet(1, 2, 3)).measure == 0 assert (square.intersect(band)).measure == 20 assert (square + band).measure is oo assert (band * FiniteSet(1, 2, 3)).measure is nan def test_is_subset(): assert Interval(0, 1).is_subset(Interval(0, 2)) is True assert Interval(0, 3).is_subset(Interval(0, 2)) is False assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4)) assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False assert FiniteSet(1).is_subset(Interval(0, 2)) assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False assert (Interval(1, 2) + FiniteSet(3)).is_subset( Interval(0, 2, False, True) + FiniteSet(2, 3)) assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True assert Interval(0, 1).is_subset(S.EmptySet) is False assert S.EmptySet.is_subset(S.EmptySet) is True raises(ValueError, lambda: S.EmptySet.is_subset(1)) # tests for the issubset alias assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True assert S.Naturals.is_subset(S.Integers) assert S.Naturals0.is_subset(S.Integers) assert FiniteSet(x).is_subset(FiniteSet(y)) is None assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False n = Symbol('n', integer=True) assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False assert Range(-oo, 1).is_subset(FiniteSet(1)) is False assert Range(3).is_subset(FiniteSet(0, 1, n)) is None assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False #issue 19513 assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None def test_is_proper_subset(): assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0)) def test_is_superset(): assert Interval(0, 1).is_superset(Interval(0, 2)) == False assert Interval(0, 3).is_superset(Interval(0, 2)) assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False assert FiniteSet(1).is_superset(Interval(0, 2)) == False assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False assert (Interval(1, 2) + FiniteSet(3)).is_superset( Interval(0, 2, False, True) + FiniteSet(2, 3)) == False assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False assert Interval(0, 1).is_superset(S.EmptySet) == True assert S.EmptySet.is_superset(S.EmptySet) == True raises(ValueError, lambda: S.EmptySet.is_superset(1)) # tests for the issuperset alias assert Interval(0, 1).issuperset(S.EmptySet) == True assert S.EmptySet.issuperset(S.EmptySet) == True def test_is_proper_superset(): assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0)) def test_contains(): assert Interval(0, 2).contains(1) is S.true assert Interval(0, 2).contains(3) is S.false assert Interval(0, 2, True, False).contains(0) is S.false assert Interval(0, 2, True, False).contains(2) is S.true assert Interval(0, 2, False, True).contains(0) is S.true assert Interval(0, 2, False, True).contains(2) is S.false assert Interval(0, 2, True, True).contains(0) is S.false assert Interval(0, 2, True, True).contains(2) is S.false assert (Interval(0, 2) in Interval(0, 2)) is False assert FiniteSet(1, 2, 3).contains(2) is S.true assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true assert FiniteSet(y)._contains(x) is None raises(TypeError, lambda: x in FiniteSet(y)) assert FiniteSet({x, y})._contains({x}) is None assert FiniteSet({x, y}).subs(y, x)._contains({x}) is True assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is False # issue 8197 from sympy.abc import a, b assert isinstance(FiniteSet(b).contains(-a), Contains) assert isinstance(FiniteSet(b).contains(a), Contains) assert isinstance(FiniteSet(a).contains(1), Contains) raises(TypeError, lambda: 1 in FiniteSet(a)) # issue 8209 rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3)) rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3)) s1 = FiniteSet(rad1) s2 = FiniteSet(rad2) assert s1 - s2 == S.EmptySet items = [1, 2, S.Infinity, S('ham'), -1.1] fset = FiniteSet(*items) assert all(item in fset for item in items) assert all(fset.contains(item) is S.true for item in items) assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false assert S.EmptySet.contains(1) is S.false assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false assert rootof(x**5 + x**3 + 1, 0) in S.Reals assert not rootof(x**5 + x**3 + 1, 1) in S.Reals # non-bool results assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \ Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4)) assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \ And(y <= 3, y <= x, S.One <= y, S(2) <= y) assert (S.Complexes).contains(S.ComplexInfinity) == S.false def test_interval_symbolic(): x = Symbol('x') e = Interval(0, 1) assert e.contains(x) == And(S.Zero <= x, x <= 1) raises(TypeError, lambda: x in e) e = Interval(0, 1, True, True) assert e.contains(x) == And(S.Zero < x, x < 1) c = Symbol('c', real=False) assert Interval(x, x + 1).contains(c) == False e = Symbol('e', extended_real=True) assert Interval(-oo, oo).contains(e) == And( S.NegativeInfinity < e, e < S.Infinity) def test_union_contains(): x = Symbol('x') i1 = Interval(0, 1) i2 = Interval(2, 3) i3 = Union(i1, i2) assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3)) raises(TypeError, lambda: x in i3) e = i3.contains(x) assert e == i3.as_relational(x) assert e.subs(x, -0.5) is false assert e.subs(x, 0.5) is true assert e.subs(x, 1.5) is false assert e.subs(x, 2.5) is true assert e.subs(x, 3.5) is false U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6) assert all(el not in U for el in [0, 4, -oo]) assert all(el in U for el in [2, 5, 10]) def test_is_number(): assert Interval(0, 1).is_number is False assert Set().is_number is False def test_Interval_is_left_unbounded(): assert Interval(3, 4).is_left_unbounded is False assert Interval(-oo, 3).is_left_unbounded is True assert Interval(Float("-inf"), 3).is_left_unbounded is True def test_Interval_is_right_unbounded(): assert Interval(3, 4).is_right_unbounded is False assert Interval(3, oo).is_right_unbounded is True assert Interval(3, Float("+inf")).is_right_unbounded is True def test_Interval_as_relational(): x = Symbol('x') assert Interval(-1, 2, False, False).as_relational(x) == \ And(Le(-1, x), Le(x, 2)) assert Interval(-1, 2, True, False).as_relational(x) == \ And(Lt(-1, x), Le(x, 2)) assert Interval(-1, 2, False, True).as_relational(x) == \ And(Le(-1, x), Lt(x, 2)) assert Interval(-1, 2, True, True).as_relational(x) == \ And(Lt(-1, x), Lt(x, 2)) assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2)) assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2)) assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo)) assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo)) assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo)) x = Symbol('x', real=True) y = Symbol('y', real=True) assert Interval(x, y).as_relational(x) == (x <= y) assert Interval(y, x).as_relational(x) == (y <= x) def test_Finite_as_relational(): x = Symbol('x') y = Symbol('y') assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2)) assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5)) def test_Union_as_relational(): x = Symbol('x') assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \ Or(And(Le(0, x), Le(x, 1)), Eq(x, 2)) assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \ And(Lt(0, x), Le(x, 1)) assert Or(x < 0, x > 0).as_set().as_relational(x) == \ And((x > -oo), (x < oo), Ne(x, 0)) assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5) ).as_relational(x) == And(Ne(x,3),(x>=1),(x<=5)) def test_Intersection_as_relational(): x = Symbol('x') assert (Intersection(Interval(0, 1), FiniteSet(2), evaluate=False).as_relational(x) == And(And(Le(0, x), Le(x, 1)), Eq(x, 2))) def test_Complement_as_relational(): x = Symbol('x') expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) assert expr.as_relational(x) == \ And(Le(0, x), Le(x, 1), Ne(x, 2)) @XFAIL def test_Complement_as_relational_fail(): x = Symbol('x') expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) # XXX This example fails because 0 <= x changes to x >= 0 # during the evaluation. assert expr.as_relational(x) == \ (0 <= x) & (x <= 1) & Ne(x, 2) def test_SymmetricDifference_as_relational(): x = Symbol('x') expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False) assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1)) def test_EmptySet(): assert S.EmptySet.as_relational(Symbol('x')) is S.false assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet assert S.EmptySet.boundary == S.EmptySet def test_finite_basic(): x = Symbol('x') A = FiniteSet(1, 2, 3) B = FiniteSet(3, 4, 5) AorB = Union(A, B) AandB = A.intersect(B) assert A.is_subset(AorB) and B.is_subset(AorB) assert AandB.is_subset(A) assert AandB == FiniteSet(3) assert A.inf == 1 and A.sup == 3 assert AorB.inf == 1 and AorB.sup == 5 assert FiniteSet(x, 1, 5).sup == Max(x, 5) assert FiniteSet(x, 1, 5).inf == Min(x, 1) # issue 7335 assert FiniteSet(S.EmptySet) != S.EmptySet assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3) assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3) # Ensure a variety of types can exist in a FiniteSet assert FiniteSet((1, 2), A, -5, x, 'eggs', x**2) assert (A > B) is False assert (A >= B) is False assert (A < B) is False assert (A <= B) is False assert AorB > A and AorB > B assert AorB >= A and AorB >= B assert A >= A and A <= A assert A >= AandB and B >= AandB assert A > AandB and B > AandB def test_product_basic(): H, T = 'H', 'T' unit_line = Interval(0, 1) d6 = FiniteSet(1, 2, 3, 4, 5, 6) d4 = FiniteSet(1, 2, 3, 4) coin = FiniteSet(H, T) square = unit_line * unit_line assert (0, 0) in square assert 0 not in square assert (H, T) in coin ** 2 assert (.5, .5, .5) in (square * unit_line).flatten() assert ((.5, .5), .5) in square * unit_line assert (H, 3, 3) in (coin * d6 * d6).flatten() assert ((H, 3), 3) in coin * d6 * d6 HH, TT = sympify(H), sympify(T) assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)} assert (d4*d4).is_subset(d6*d6) assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union( (Interval(-oo, 0, True, True) + Interval(1, oo, True, True))*Interval(-oo, oo), Interval(-oo, oo)*(Interval(-oo, 0, True, True) + Interval(1, oo, True, True))) assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3) assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3) assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3) assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square assert len(coin*coin*coin) == 8 assert len(S.EmptySet*S.EmptySet) == 0 assert len(S.EmptySet*coin) == 0 raises(TypeError, lambda: len(coin*Interval(0, 2))) def test_real(): x = Symbol('x', real=True) I = Interval(0, 5) J = Interval(10, 20) A = FiniteSet(1, 2, 30, x, S.Pi) B = FiniteSet(-4, 0) C = FiniteSet(100) D = FiniteSet('Ham', 'Eggs') assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C]) assert not D.is_subset(S.Reals) assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C]) assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D]) assert not (I + A + D).is_subset(S.Reals) def test_supinf(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert (Interval(0, 1) + FiniteSet(2)).sup == 2 assert (Interval(0, 1) + FiniteSet(2)).inf == 0 assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x) assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x) assert FiniteSet(5, 1, x).sup == Max(5, x) assert FiniteSet(5, 1, x).inf == Min(1, x) assert FiniteSet(5, 1, x, y).sup == Max(5, x, y) assert FiniteSet(5, 1, x, y).inf == Min(1, x, y) assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \ S.Infinity assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \ S.NegativeInfinity assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs') def test_universalset(): U = S.UniversalSet x = Symbol('x') assert U.as_relational(x) is S.true assert U.union(Interval(2, 4)) == U assert U.intersect(Interval(2, 4)) == Interval(2, 4) assert U.measure is S.Infinity assert U.boundary == S.EmptySet assert U.contains(0) is S.true def test_Union_of_ProductSets_shares(): line = Interval(0, 2) points = FiniteSet(0, 1, 2) assert Union(line * line, line * points) == line * line def test_Interval_free_symbols(): # issue 6211 assert Interval(0, 1).free_symbols == set() x = Symbol('x', real=True) assert Interval(0, x).free_symbols == {x} def test_image_interval(): x = Symbol('x', real=True) a = Symbol('a', real=True) assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2) assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \ Interval(-4, 2, True, False) assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ Interval(0, 4, False, True) assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4) assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ Interval(0, 4, False, True) assert imageset(x, x**2, Interval(-2, 1, True, True)) == \ Interval(0, 4, False, True) assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1) assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \ Interval(-35, 0) # Multiple Maxima assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \ + Interval(2, oo) # Single Infinite discontinuity assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \ Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities # Test for Python lambda assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2) assert imageset(Lambda(x, a*x), Interval(0, 1)) == \ ImageSet(Lambda(x, a*x), Interval(0, 1)) assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \ ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1)) def test_image_piecewise(): f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True)) f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True)) assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo)) assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1) @XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826 def test_image_Intersection(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \ Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2))) def test_image_FiniteSet(): x = Symbol('x', real=True) assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6) def test_image_Union(): x = Symbol('x', real=True) assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \ (Interval(0, 4) + FiniteSet(9)) def test_image_EmptySet(): x = Symbol('x', real=True) assert imageset(x, 2*x, S.EmptySet) == S.EmptySet def test_issue_5724_7680(): assert I not in S.Reals # issue 7680 assert Interval(-oo, oo).contains(I) is S.false def test_boundary(): assert FiniteSet(1).boundary == FiniteSet(1) assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1) for left_open in (true, false) for right_open in (true, false)) def test_boundary_Union(): assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3) assert ((Interval(0, 1, False, True) + Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2)) assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2) assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \ == FiniteSet(0, 15) assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \ == FiniteSet(0, 10) assert Union(Interval(0, 10, True, True), Interval(10, 15, True, True), evaluate=False).boundary \ == FiniteSet(0, 10, 15) @XFAIL def test_union_boundary_of_joining_sets(): """ Testing the boundary of unions is a hard problem """ assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \ == FiniteSet(0, 15) def test_boundary_ProductSet(): open_square = Interval(0, 1, True, True) ** 2 assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1) + Interval(0, 1) * FiniteSet(0, 1)) second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True) assert (open_square + second_square).boundary == ( FiniteSet(0, 1) * Interval(0, 1) + FiniteSet(1, 2) * Interval(0, 1) + Interval(0, 1) * FiniteSet(0, 1) + Interval(1, 2) * FiniteSet(0, 1)) def test_boundary_ProductSet_line(): line_in_r2 = Interval(0, 1) * FiniteSet(0) assert line_in_r2.boundary == line_in_r2 def test_is_open(): assert Interval(0, 1, False, False).is_open is False assert Interval(0, 1, True, False).is_open is False assert Interval(0, 1, True, True).is_open is True assert FiniteSet(1, 2, 3).is_open is False def test_is_closed(): assert Interval(0, 1, False, False).is_closed is True assert Interval(0, 1, True, False).is_closed is False assert FiniteSet(1, 2, 3).is_closed is True def test_closure(): assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False) def test_interior(): assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True) def test_issue_7841(): raises(TypeError, lambda: x in S.Reals) def test_Eq(): assert Eq(Interval(0, 1), Interval(0, 1)) assert Eq(Interval(0, 1), Interval(0, 2)) == False s1 = FiniteSet(0, 1) s2 = FiniteSet(1, 2) assert Eq(s1, s1) assert Eq(s1, s2) == False assert Eq(s1*s2, s1*s2) assert Eq(s1*s2, s2*s1) == False assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x})) assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false assert Eq(FiniteSet(()), FiniteSet(1)) is S.false assert Eq(ProductSet(), FiniteSet(1)) is S.false i1 = Interval(0, 1) i2 = Interval(x, y) assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2)) def test_SymmetricDifference(): A = FiniteSet(0, 1, 2, 3, 4, 5) B = FiniteSet(2, 4, 6, 8, 10) C = Interval(8, 10) assert SymmetricDifference(A, B, evaluate=False).is_iterable is True assert SymmetricDifference(A, C, evaluate=False).is_iterable is None assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \ FiniteSet(0, 1, 3, 5, 6, 8, 10) raises(TypeError, lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False))) assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \ FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10) assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \ == FiniteSet(5) assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \ FiniteSet(3, 4, 6) assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \ Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3))) assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \ Interval(2, 5), Interval(2, 5) - Interval(0, 4)) def test_issue_9536(): from sympy.functions.elementary.exponential import log a = Symbol('a', real=True) assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a))) def test_issue_9637(): n = Symbol('n') a = FiniteSet(n) b = FiniteSet(2, n) assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False) assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False) assert Complement(Interval(1, 3), b) == \ Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a) assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False) assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False) def test_issue_9808(): # See https://github.com/sympy/sympy/issues/16342 assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False) assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \ Complement(FiniteSet(1), FiniteSet(y), evaluate=False) def test_issue_9956(): assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo) assert Interval(-oo, oo).contains(1) is S.true def test_issue_Symbol_inter(): i = Interval(0, oo) r = S.Reals mat = Matrix([0, 0, 0]) assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \ Intersection(i, FiniteSet(m)) assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \ Intersection(i, FiniteSet(m, n)) assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \ Intersection(Intersection({m, z}, {m, n, x}), r) assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \ Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False) assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \ Intersection(FiniteSet(3, m, n), r) assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \ Intersection(r, FiniteSet(n)) assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \ Intersection(r, FiniteSet(sin(x), cos(x))) assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \ Intersection(r, FiniteSet(x**2, sin(x))) def test_issue_11827(): assert S.Naturals0**4 def test_issue_10113(): f = x**2/(x**2 - 4) assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True)) assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0) assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo)) def test_issue_10248(): raises( TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x))) ) A = Symbol('A', real=True) assert list(Intersection(S.Reals, FiniteSet(A))) == [A] def test_issue_9447(): a = Interval(0, 1) + Interval(2, 3) assert Complement(S.UniversalSet, a) == Complement( S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) assert Complement(S.Naturals, a) == Complement( S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) def test_issue_10337(): assert (FiniteSet(2) == 3) is False assert (FiniteSet(2) != 3) is True raises(TypeError, lambda: FiniteSet(2) < 3) raises(TypeError, lambda: FiniteSet(2) <= 3) raises(TypeError, lambda: FiniteSet(2) > 3) raises(TypeError, lambda: FiniteSet(2) >= 3) def test_issue_10326(): bad = [ EmptySet, FiniteSet(1), Interval(1, 2), S.ComplexInfinity, S.ImaginaryUnit, S.Infinity, S.NaN, S.NegativeInfinity, ] interval = Interval(0, 5) for i in bad: assert i not in interval x = Symbol('x', real=True) nr = Symbol('nr', extended_real=False) assert x + 1 in Interval(x, x + 4) assert nr not in Interval(x, x + 4) assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2)) assert Interval(-oo, oo).contains(oo) is S.false assert Interval(-oo, oo).contains(-oo) is S.false def test_issue_2799(): U = S.UniversalSet a = Symbol('a', real=True) inf_interval = Interval(a, oo) R = S.Reals assert U + inf_interval == inf_interval + U assert U + R == R + U assert R + inf_interval == inf_interval + R def test_issue_9706(): assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False) assert Interval(0, oo).closure == Interval(0, oo, False, True) assert Interval(-oo, oo).closure == Interval(-oo, oo) def test_issue_8257(): reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo)) reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo)) assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity def test_issue_10931(): assert S.Integers - S.Integers == EmptySet assert S.Integers - S.Reals == EmptySet def test_issue_11174(): soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False) assert Intersection(FiniteSet(-x), S.Reals) == soln soln = Intersection(S.Reals, FiniteSet(x), evaluate=False) assert Intersection(FiniteSet(x), S.Reals) == soln def test_issue_18505(): assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \ Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers)) def test_finite_set_intersection(): # The following should not produce recursion errors # Note: some of these are not completely correct. See # https://github.com/sympy/sympy/issues/16342. assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \ Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \ Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \ Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y)) assert FiniteSet(1+x-y) & FiniteSet(1) == \ FiniteSet(1) & FiniteSet(1+x-y) == \ Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False) assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \ Intersection(FiniteSet(1), FiniteSet(x), evaluate=False) assert FiniteSet({x}) & FiniteSet({x, y}) == \ Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False) def test_union_intersection_constructor(): # The actual exception does not matter here, so long as these fail sets = [FiniteSet(1), FiniteSet(2)] raises(Exception, lambda: Union(sets)) raises(Exception, lambda: Intersection(sets)) raises(Exception, lambda: Union(tuple(sets))) raises(Exception, lambda: Intersection(tuple(sets))) raises(Exception, lambda: Union(i for i in sets)) raises(Exception, lambda: Intersection(i for i in sets)) # Python sets are treated the same as FiniteSet # The union of a single set (of sets) is the set (of sets) itself assert Union(set(sets)) == FiniteSet(*sets) assert Intersection(set(sets)) == FiniteSet(*sets) assert Union({1}, {2}) == FiniteSet(1, 2) assert Intersection({1, 2}, {2, 3}) == FiniteSet(2) def test_Union_contains(): assert zoo not in Union( Interval.open(-oo, 0), Interval.open(0, oo)) @XFAIL def test_issue_16878b(): # in intersection_sets for (ImageSet, Set) there is no code # that handles the base_set of S.Reals like there is # for Integers assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True def test_DisjointUnion(): assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2)) assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1)) assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1)) assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1) assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0) assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet assert DisjointUnion().rewrite(Union) == S.EmptySet raises(TypeError, lambda: DisjointUnion(Symbol('n'))) x = Symbol("x") y = Symbol("y") z = Symbol("z") assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1)) def test_DisjointUnion_is_empty(): assert DisjointUnion(S.EmptySet).is_empty is True assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False def test_DisjointUnion_is_iterable(): assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False def test_DisjointUnion_contains(): assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5)) assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) def test_DisjointUnion_iter(): D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z)) it = iter(D) L1 = [(x, 1), (y, 1), (z, 1)] L2 = [(3, 0), (5, 0), (7, 0), (9, 0)] nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) raises(StopIteration, lambda: next(it)) raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet))) def test_DisjointUnion_len(): assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7 assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3 raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet))) def test_SetKind_ProductSet(): p = ProductSet(FiniteSet(Matrix([1, 2])), FiniteSet(Matrix([1, 2]))) mk = MatrixKind(NumberKind) k = SetKind(TupleKind(mk, mk)) assert p.kind is k assert ProductSet(Interval(1, 2), FiniteSet(Matrix([1, 2]))).kind is SetKind(TupleKind(NumberKind, mk)) def test_SetKind_Interval(): assert Interval(1, 2).kind is SetKind(NumberKind) def test_SetKind_EmptySet_UniversalSet(): assert S.UniversalSet.kind is SetKind(UndefinedKind) assert EmptySet.kind is SetKind() def test_SetKind_FiniteSet(): assert FiniteSet(1, Matrix([1, 2])).kind is SetKind(UndefinedKind) assert FiniteSet(1, 2).kind is SetKind(NumberKind) def test_SetKind_Unions(): assert Union(FiniteSet(Matrix([1, 2])), Interval(1, 2)).kind is SetKind(UndefinedKind) assert Union(Interval(1, 2), Interval(1, 7)).kind is SetKind(NumberKind) def test_SetKind_DisjointUnion(): A = FiniteSet(1, 2, 3) B = Interval(0, 5) assert DisjointUnion(A, B).kind is SetKind(NumberKind) def test_SetKind_evaluate_False(): U = lambda *args: Union(*args, evaluate=False) assert U({1}, EmptySet).kind is SetKind(NumberKind) assert U(Interval(1, 2), EmptySet).kind is SetKind(NumberKind) assert U({1}, S.UniversalSet).kind is SetKind(UndefinedKind) assert U(Interval(1, 2), Interval(4, 5), FiniteSet(1)).kind is SetKind(NumberKind) I = lambda *args: Intersection(*args, evaluate=False) assert I({1}, S.UniversalSet).kind is SetKind(NumberKind) assert I({1}, EmptySet).kind is SetKind() C = lambda *args: Complement(*args, evaluate=False) assert C(S.UniversalSet, {1, 2, 4, 5}).kind is SetKind(UndefinedKind) assert C({1, 2, 3, 4, 5}, EmptySet).kind is SetKind(NumberKind) assert C(EmptySet, {1, 2, 3, 4, 5}).kind is SetKind() def test_SetKind_ImageSet_Special(): f = ImageSet(Lambda(n, n ** 2), Interval(1, 4)) assert (f - FiniteSet(3)).kind is SetKind(NumberKind) assert (f + Interval(16, 17)).kind is SetKind(NumberKind) assert (f + FiniteSet(17)).kind is SetKind(NumberKind) def test_issue_20089(): B = FiniteSet(FiniteSet(1, 2), FiniteSet(1)) assert 1 not in B assert 1.0 not in B assert not Eq(1, FiniteSet(1, 2)) assert FiniteSet(1) in B A = FiniteSet(1, 2) assert A in B assert B.issubset(B) assert not A.issubset(B) assert 1 in A C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2) assert A.issubset(C) assert B.issubset(C) def test_issue_19378(): a = FiniteSet(1, 2) b = ProductSet(a, a) c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2)) assert b.is_subset(c) is True d = FiniteSet(1) assert b.is_subset(d) is False assert Eq(c, b).simplify() is S.true assert Eq(a, c).simplify() is S.false assert Eq({1}, {x}).simplify() == Eq({1}, {x}) def test_intersection_symbolic(): n = Symbol('n') # These should not throw an error assert isinstance(Intersection(Range(n), Range(100)), Intersection) assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection) assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection) @XFAIL def test_intersection_symbolic_failing(): n = Symbol('n', integer=True, positive=True) assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection( Range(14, n), Range(14, 500, 5)) assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection( Interval(14, n), Range(14, 500, 5)) def test_issue_20379(): #https://github.com/sympy/sympy/issues/20379 x = pi - 3.14159265358979 assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2)) def test_finiteset_simplify(): S = FiniteSet(1, cos(1)**2 + sin(1)**2) assert S.simplify() == {1}