""" Unit tests for Hyper_Function""" from sympy.core import symbols, Dummy, Tuple, S, Rational from sympy.functions import hyper from sympy.simplify.hyperexpand import Hyper_Function def test_attrs(): a, b = symbols('a, b', cls=Dummy) f = Hyper_Function([2, a], [b]) assert f.ap == Tuple(2, a) assert f.bq == Tuple(b) assert f.args == (Tuple(2, a), Tuple(b)) assert f.sizes == (2, 1) def test_call(): a, b, x = symbols('a, b, x', cls=Dummy) f = Hyper_Function([2, a], [b]) assert f(x) == hyper([2, a], [b], x) def test_has(): a, b, c = symbols('a, b, c', cls=Dummy) f = Hyper_Function([2, -a], [b]) assert f.has(a) assert f.has(Tuple(b)) assert not f.has(c) def test_eq(): assert Hyper_Function([1], []) == Hyper_Function([1], []) assert (Hyper_Function([1], []) != Hyper_Function([1], [])) is False assert Hyper_Function([1], []) != Hyper_Function([2], []) assert Hyper_Function([1], []) != Hyper_Function([1, 2], []) assert Hyper_Function([1], []) != Hyper_Function([1], [2]) def test_gamma(): assert Hyper_Function([2, 3], [-1]).gamma == 0 assert Hyper_Function([-2, -3], [-1]).gamma == 2 n = Dummy(integer=True) assert Hyper_Function([-1, n, 1], []).gamma == 1 assert Hyper_Function([-1, -n, 1], []).gamma == 1 p = Dummy(integer=True, positive=True) assert Hyper_Function([-1, p, 1], []).gamma == 1 assert Hyper_Function([-1, -p, 1], []).gamma == 2 def test_suitable_origin(): assert Hyper_Function((S.Half,), (Rational(3, 2),))._is_suitable_origin() is True assert Hyper_Function((S.Half,), (S.Half,))._is_suitable_origin() is False assert Hyper_Function((S.Half,), (Rational(-1, 2),))._is_suitable_origin() is False assert Hyper_Function((S.Half,), (0,))._is_suitable_origin() is False assert Hyper_Function((S.Half,), (-1, 1,))._is_suitable_origin() is False assert Hyper_Function((S.Half, 0), (1,))._is_suitable_origin() is False assert Hyper_Function((S.Half, 1), (2, Rational(-2, 3)))._is_suitable_origin() is True assert Hyper_Function((S.Half, 1), (2, Rational(-2, 3), Rational(3, 2)))._is_suitable_origin() is True