""" Tests from Michael Wester's 1999 paper "Review of CAS mathematical capabilities". http://www.math.unm.edu/~wester/cas/book/Wester.pdf See also http://math.unm.edu/~wester/cas_review.html for detailed output of each tested system. """ from sympy.assumptions.ask import Q, ask from sympy.assumptions.refine import refine from sympy.concrete.products import product from sympy.core import EulerGamma from sympy.core.evalf import N from sympy.core.function import (Derivative, Function, Lambda, Subs, diff, expand, expand_func) from sympy.core.mul import Mul from sympy.core.numbers import (AlgebraicNumber, E, I, Rational, igcd, nan, oo, pi, zoo) from sympy.core.relational import Eq, Lt from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol, symbols from sympy.functions.combinatorial.factorials import (rf, binomial, factorial, factorial2) from sympy.functions.combinatorial.numbers import bernoulli, fibonacci from sympy.functions.elementary.complexes import (conjugate, im, re, sign) from sympy.functions.elementary.exponential import LambertW, exp, log from sympy.functions.elementary.hyperbolic import (asinh, cosh, sinh, tanh) from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (acos, acot, asin, atan, cos, cot, csc, sec, sin, tan) from sympy.functions.special.bessel import besselj from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.elliptic_integrals import (elliptic_e, elliptic_f) from sympy.functions.special.gamma_functions import gamma, polygamma from sympy.functions.special.hyper import hyper from sympy.functions.special.polynomials import (assoc_legendre, chebyshevt) from sympy.functions.special.zeta_functions import polylog from sympy.geometry.util import idiff from sympy.logic.boolalg import And from sympy.matrices.dense import hessian, wronskian from sympy.matrices.expressions.matmul import MatMul from sympy.ntheory.continued_fraction import ( continued_fraction_convergents as cf_c, continued_fraction_iterator as cf_i, continued_fraction_periodic as cf_p, continued_fraction_reduce as cf_r) from sympy.ntheory.factor_ import factorint, totient from sympy.ntheory.generate import primerange from sympy.ntheory.partitions_ import npartitions from sympy.polys.domains.integerring import ZZ from sympy.polys.orthopolys import legendre_poly from sympy.polys.partfrac import apart from sympy.polys.polytools import Poly, factor, gcd, resultant from sympy.series.limits import limit from sympy.series.order import O from sympy.series.residues import residue from sympy.series.series import series from sympy.sets.fancysets import ImageSet from sympy.sets.sets import FiniteSet, Intersection, Interval, Union from sympy.simplify.combsimp import combsimp from sympy.simplify.hyperexpand import hyperexpand from sympy.simplify.powsimp import powdenest, powsimp from sympy.simplify.radsimp import radsimp from sympy.simplify.simplify import logcombine, simplify from sympy.simplify.sqrtdenest import sqrtdenest from sympy.simplify.trigsimp import trigsimp from sympy.solvers.solvers import solve import mpmath from sympy.functions.combinatorial.numbers import stirling from sympy.functions.special.delta_functions import Heaviside from sympy.functions.special.error_functions import Ci, Si, erf from sympy.functions.special.zeta_functions import zeta from sympy.testing.pytest import (XFAIL, slow, SKIP, skip, ON_CI, raises) from sympy.utilities.iterables import partitions from mpmath import mpi, mpc from sympy.matrices import Matrix, GramSchmidt, eye from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix from sympy.physics.quantum import Commutator from sympy.polys.rings import PolyRing from sympy.polys.fields import FracField from sympy.polys.solvers import solve_lin_sys from sympy.concrete import Sum from sympy.concrete.products import Product from sympy.integrals import integrate from sympy.integrals.transforms import laplace_transform,\ inverse_laplace_transform, LaplaceTransform, fourier_transform,\ mellin_transform from sympy.solvers.recurr import rsolve from sympy.solvers.solveset import solveset, solveset_real, linsolve from sympy.solvers.ode import dsolve from sympy.core.relational import Equality from itertools import islice, takewhile from sympy.series.formal import fps from sympy.series.fourier import fourier_series from sympy.calculus.util import minimum EmptySet = S.EmptySet R = Rational x, y, z = symbols('x y z') i, j, k, l, m, n = symbols('i j k l m n', integer=True) f = Function('f') g = Function('g') # A. Boolean Logic and Quantifier Elimination # Not implemented. # B. Set Theory def test_B1(): assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) | FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m) def test_B2(): assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) & FiniteSet(j, m, j)) == Intersection({j, m}, {i, j, k}, {j, k, l}) # Previous output below. Not sure why that should be the expected output. # There should probably be a way to rewrite Intersections that way but I # don't see why an Intersection should evaluate like that: # # == Union({j}, Intersection({m}, Union({j, k}, Intersection({i}, {l})))) def test_B3(): assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) == FiniteSet(i, k, l, m)) def test_B4(): assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) == FiniteSet((i, k), (i, l), (j, k), (j, l))) # C. Numbers def test_C1(): assert (factorial(50) == 30414093201713378043612608166064768844377641568960512000000000000) def test_C2(): assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8, 11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1, 41: 1, 43: 1, 47: 1}) def test_C3(): assert (factorial2(10), factorial2(9)) == (3840, 945) # Base conversions; not really implemented by SymPy # Whatever. Take credit! def test_C4(): assert 0xABC == 2748 def test_C5(): assert 123 == int('234', 7) def test_C6(): assert int('677', 8) == int('1BF', 16) == 447 def test_C7(): assert log(32768, 8) == 5 def test_C8(): # Modular multiplicative inverse. Would be nice if divmod could do this. assert ZZ.invert(5, 7) == 3 assert ZZ.invert(5, 6) == 5 def test_C9(): assert igcd(igcd(1776, 1554), 5698) == 74 def test_C10(): x = 0 for n in range(2, 11): x += R(1, n) assert x == R(4861, 2520) def test_C11(): assert R(1, 7) == S('0.[142857]') def test_C12(): assert R(7, 11) * R(22, 7) == 2 def test_C13(): test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3) good = 3 ** R(1, 3) assert test == good def test_C14(): assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3) def test_C15(): test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2)))))) good = sqrt(2) + 3 assert test == good def test_C16(): test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15))) good = sqrt(2) + sqrt(3) + sqrt(5) assert test == good def test_C17(): test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2))) good = 5 + 2*sqrt(6) assert test == good def test_C18(): assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3 @XFAIL def test_C19(): assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7) def test_C20(): inside = (135 + 78*sqrt(3)) test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3)) assert simplify(test) == AlgebraicNumber(12) def test_C21(): assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \ AlgebraicNumber(1 + sqrt(2)) @XFAIL def test_C22(): test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17 - 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72)) good = sqrt(2)/3 - log(sqrt(2) - 1)/3 assert test == good def test_C23(): assert 2 * oo - 3 is oo @XFAIL def test_C24(): raise NotImplementedError("2**aleph_null == aleph_1") # D. Numerical Analysis def test_D1(): assert 0.0 / sqrt(2) == 0.0 def test_D2(): assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295' def test_D3(): assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744) def test_D4(): assert floor(R(-5, 3)) == -2 assert ceiling(R(-5, 3)) == -1 @XFAIL def test_D5(): raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8") @XFAIL def test_D6(): raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN") @XFAIL def test_D7(): raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C") @XFAIL def test_D8(): # One way is to cheat by converting the sum to a string, # and replacing the '[' and ']' with ''. # E.g., horner(S(str(_).replace('[','').replace(']',''))) raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))") @XFAIL def test_D9(): raise NotImplementedError("translate D8 to FORTRAN") @XFAIL def test_D10(): raise NotImplementedError("translate D8 to C") @XFAIL def test_D11(): #Is there a way to use count_ops? raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))") @XFAIL def test_D12(): assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9) @XFAIL def test_D13(): raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)") # E. Statistics # See scipy; all of this is numerical. # F. Combinatorial Theory. def test_F1(): assert rf(x, 3) == x*(1 + x)*(2 + x) def test_F2(): assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6 @XFAIL def test_F3(): assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n) @XFAIL def test_F4(): assert combsimp(2**n * factorial(n) * product(2*k - 1, (k, 1, n))) == factorial(2*n) @XFAIL def test_F5(): assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2 def test_F6(): partTest = [p.copy() for p in partitions(4)] partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}] assert partTest == partDesired def test_F7(): assert npartitions(4) == 5 def test_F8(): assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1 def test_F9(): assert totient(1776) == 576 # G. Number Theory def test_G1(): assert list(primerange(999983, 1000004)) == [999983, 1000003] @XFAIL def test_G2(): raise NotImplementedError("find the primitive root of 191 == 19") @XFAIL def test_G3(): raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime") # ... G14 Modular equations are not implemented. def test_G15(): assert Rational(sqrt(3).evalf()).limit_denominator(15) == R(26, 15) assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \ R(26, 15) def test_G16(): assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1] def test_G17(): assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]] def test_G18(): assert cf_p(1, 2, 5) == [[1]] assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2 @XFAIL def test_G19(): s = symbols('s', integer=True, positive=True) it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1)) assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s] def test_G20(): s = symbols('s', integer=True, positive=True) # Wester erroneously has this as -s + sqrt(s**2 + 1) assert cf_r([[2*s]]) == s + sqrt(s**2 + 1) @XFAIL def test_G20b(): s = symbols('s', integer=True, positive=True) assert cf_p(s, 1, s**2 + 1) == [[2*s]] # H. Algebra def test_H1(): assert simplify(2*2**n) == simplify(2**(n + 1)) assert powdenest(2*2**n) == simplify(2**(n + 1)) def test_H2(): assert powsimp(4 * 2**n) == 2**(n + 2) def test_H3(): assert (-1)**(n*(n + 1)) == 1 def test_H4(): expr = factor(6*x - 10) assert type(expr) is Mul assert expr.args[0] == 2 assert expr.args[1] == 3*x - 5 p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81 p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81 q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86 def test_H5(): assert gcd(p1, p2, x) == 1 def test_H6(): assert gcd(expand(p1 * q), expand(p2 * q)) == q def test_H7(): p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z assert gcd(p1, p2, x, y, z) == 1 def test_H8(): p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8 assert gcd(p1 * q, p2 * q, x, y, z) == q def test_H9(): x = Symbol('x', zero=False) p1 = 2*x**(n + 4) - x**(n + 2) p2 = 4*x**(n + 1) + 3*x**n assert gcd(p1, p2) == x**n def test_H10(): p1 = 3*x**4 + 3*x**3 + x**2 - x - 2 p2 = x**3 - 3*x**2 + x + 5 assert resultant(p1, p2, x) == 0 def test_H11(): assert resultant(p1 * q, p2 * q, x) == 0 def test_H12(): num = x**2 - 4 den = x**2 + 4*x + 4 assert simplify(num/den) == (x - 2)/(x + 2) @XFAIL def test_H13(): assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1 def test_H14(): p = (x + 1) ** 20 ep = expand(p) assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5 + 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10 + 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15 + 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20) dep = diff(ep, x) assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4 + 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9 + 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13 + 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18 + 20*x**19) assert factor(dep) == 20*(1 + x)**19 def test_H15(): assert simplify(Mul(*[x - r for r in solveset(x**3 + x**2 - 7)])) == x**3 + x**2 - 7 def test_H16(): assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3 + x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4 - x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10 + x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1)) def test_H17(): assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0 @XFAIL def test_H18(): # Factor over complex rationals. test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153) good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I) assert test == good def test_H19(): a = symbols('a') # The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1") assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1 @XFAIL def test_H20(): raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - " + "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)") @XFAIL def test_H21(): raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \ Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9") def test_H22(): assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2 def test_H23(): f = x**11 + x + 1 g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1) assert factor(f, modulus=65537) == g def test_H24(): phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi') assert factor(x**4 - 3*x**2 + 1, extension=phi) == \ (x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi) def test_H25(): e = (x - 2*y**2 + 3*z**3) ** 20 assert factor(expand(e)) == e def test_H26(): g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20) assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20 def test_H27(): f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z h = -2*z*y**7 \ *(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \ *(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5) assert factor(expand(f*g)) == h @XFAIL def test_H28(): raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * " + "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.") @XFAIL def test_H29(): assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y) def test_H30(): test = factor(x**3 + y**3, extension=sqrt(-3)) answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I)) assert answer == test def test_H31(): f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2) g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2) assert apart(f) == g @XFAIL def test_H32(): # issue 6558 raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \ of a non-commuting product and its inverse)") def test_H33(): A, B, C = symbols('A, B, C', commutative=False) assert (Commutator(A, Commutator(B, C)) + Commutator(B, Commutator(C, A)) + Commutator(C, Commutator(A, B))).doit().expand() == 0 # I. Trigonometry def test_I1(): assert tan(pi*R(7, 10)) == -sqrt(1 + 2/sqrt(5)) @XFAIL def test_I2(): assert sqrt((1 + cos(6))/2) == -cos(3) def test_I3(): assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1 def test_I4(): assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1 @XFAIL def test_I5(): assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0 @XFAIL def test_I6(): raise NotImplementedError("assuming -3*pi pi**E) @XFAIL def test_N2(): x = symbols('x', real=True) assert ask(x**4 - x + 1 > 0) is True assert ask(x**4 - x + 1 > 1) is False @XFAIL def test_N3(): x = symbols('x', real=True) assert ask(And(Lt(-1, x), Lt(x, 1)), abs(x) < 1 ) @XFAIL def test_N4(): x, y = symbols('x y', real=True) assert ask(2*x**2 > 2*y**2, (x > y) & (y > 0)) is True @XFAIL def test_N5(): x, y, k = symbols('x y k', real=True) assert ask(k*x**2 > k*y**2, (x > y) & (y > 0) & (k > 0)) is True @slow @XFAIL def test_N6(): x, y, k, n = symbols('x y k n', real=True) assert ask(k*x**n > k*y**n, (x > y) & (y > 0) & (k > 0) & (n > 0)) is True @XFAIL def test_N7(): x, y = symbols('x y', real=True) assert ask(y > 0, (x > 1) & (y >= x - 1)) is True @XFAIL @slow def test_N8(): x, y, z = symbols('x y z', real=True) assert ask(Eq(x, y) & Eq(y, z), (x >= y) & (y >= z) & (z >= x)) def test_N9(): x = Symbol('x') assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True), Interval(3, oo, True)) def test_N10(): x = Symbol('x') p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5) assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True), Interval(2, 3, True, True), Interval(4, 5, True, True)) def test_N11(): x = Symbol('x') assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo)) def test_N12(): x = Symbol('x') assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True) def test_N13(): x = Symbol('x') assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals @XFAIL def test_N14(): x = Symbol('x') # Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true), # Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))' # which is not the correct answer, but the provided also seems wrong. assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True), Interval(pi/2, oo, True, True)) def test_N15(): r, t = symbols('r t') # raises NotImplementedError: only univariate inequalities are supported solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals) def test_N16(): r, t = symbols('r t') solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals) @XFAIL def test_N17(): # currently only univariate inequalities are supported assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y) def test_O1(): M = Matrix((1 + I, -2, 3*I)) assert sqrt(expand(M.dot(M.H))) == sqrt(15) def test_O2(): assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11], [-5], [4]]) # The vector module has no way of representing vectors symbolically (without # respect to a basis) @XFAIL def test_O3(): # assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc) raise NotImplementedError("""The vector module has no way of representing vectors symbolically (without respect to a basis)""") def test_O4(): from sympy.vector import CoordSys3D, Del N = CoordSys3D("N") delop = Del() i, j, k = N.base_vectors() x, y, z = N.base_scalars() F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3)) assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k @XFAIL def test_O5(): #assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0 raise NotImplementedError("""The vector module has no way of representing vectors symbolically (without respect to a basis)""") #testO8-O9 MISSING!! def test_O10(): L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])] assert GramSchmidt(L) == [Matrix([ [2], [3], [5]]), Matrix([ [R(23, 19)], [R(63, 19)], [R(-47, 19)]]), Matrix([ [R(1692, 353)], [R(-1551, 706)], [R(-423, 706)]])] def test_P1(): assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix( 1, 2, [-1, -1]) def test_P2(): M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) M.row_del(1) M.col_del(2) assert M == Matrix([[1, 2], [7, 8]]) def test_P3(): A = Matrix([ [11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]]) A11 = A[0:3, 1:4] A12 = A[(0, 1, 3), (2, 0, 3)] A21 = A A221 = -A[0:2, 2:4] A222 = -A[(3, 0), (2, 1)] A22 = BlockMatrix([[A221, A222]]).T rows = [[-A11, A12], [A21, A22]] raises(ValueError, lambda: BlockMatrix(rows)) B = Matrix(rows) assert B == Matrix([ [-12, -13, -14, 13, 11, 14], [-22, -23, -24, 23, 21, 24], [-32, -33, -34, 43, 41, 44], [11, 12, 13, 14, -13, -23], [21, 22, 23, 24, -14, -24], [31, 32, 33, 34, -43, -13], [41, 42, 43, 44, -42, -12]]) @XFAIL def test_P4(): raise NotImplementedError("Block matrix diagonalization not supported") def test_P5(): M = Matrix([[7, 11], [3, 8]]) assert M % 2 == Matrix([[1, 1], [1, 0]]) def test_P6(): M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)], [sin(x), -cos(x)]]) def test_P7(): M = Matrix([[x, y]])*( z*Matrix([[1, 3, 5], [2, 4, 6]]) + Matrix([[7, -9, 11], [-8, 10, -12]])) assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10), x*(5*z + 11) + y*(6*z - 12)]]) def test_P8(): M = Matrix([[1, -2*I], [-3*I, 4]]) assert M.norm(ord=S.Infinity) == 7 def test_P9(): a, b, c = symbols('a b c', nonzero=True) M = Matrix([[a/(b*c), 1/c, 1/b], [1/c, b/(a*c), 1/a], [1/b, 1/a, c/(a*b)]]) assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c)) @XFAIL def test_P10(): M = Matrix([[1, 2 + 3*I], [f(4 - 5*I), 6]]) # conjugate(f(4 - 5*i)) is not simplified to f(4+5*I) assert M.H == Matrix([[1, f(4 + 5*I)], [2 + 3*I, 6]]) @XFAIL def test_P11(): # raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv() # not simplifying to extract common factor") assert Matrix([[x, y], [1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1], [-1/y, x/y]]) def test_P11_workaround(): # This test was changed to inverse method ADJ because it depended on the # specific form of inverse returned from the 'GE' method which has changed. M = Matrix([[x, y], [1, x*y]]).inv('ADJ') c = gcd(tuple(M)) assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([ [x*y, -y], [ -1, x]]), evaluate=False) def test_P12(): A11 = MatrixSymbol('A11', n, n) A12 = MatrixSymbol('A12', n, n) A22 = MatrixSymbol('A22', n, n) B = BlockMatrix([[A11, A12], [ZeroMatrix(n, n), A22]]) assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I], [ZeroMatrix(n, n), A22.I]]) def test_P13(): M = Matrix([[1, x - 2, x - 3], [x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2], [x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]]) L, U, _ = M.LUdecomposition() assert simplify(L) == Matrix([[1, 0, 0], [x - 1, 1, 0], [x - 2, x - 3, 1]]) assert simplify(U) == Matrix([[1, x - 2, x - 3], [0, 4, x - 5], [0, 0, x - 7]]) def test_P14(): M = Matrix([[1, 2, 3, 1, 3], [3, 2, 1, 1, 7], [0, 2, 4, 1, 1], [1, 1, 1, 1, 4]]) R, _ = M.rref() assert R == Matrix([[1, 0, -1, 0, 2], [0, 1, 2, 0, -1], [0, 0, 0, 1, 3], [0, 0, 0, 0, 0]]) def test_P15(): M = Matrix([[-1, 3, 7, -5], [4, -2, 1, 3], [2, 4, 15, -7]]) assert M.rank() == 2 def test_P16(): M = Matrix([[2*sqrt(2), 8], [6*sqrt(6), 24*sqrt(3)]]) assert M.rank() == 1 def test_P17(): t = symbols('t', real=True) M=Matrix([ [sin(2*t), cos(2*t)], [2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]]) assert M.rank() == 1 def test_P18(): M = Matrix([[1, 0, -2, 0], [-2, 1, 0, 3], [-1, 2, -6, 6]]) assert M.nullspace() == [Matrix([[2], [4], [1], [0]]), Matrix([[0], [-3], [0], [1]])] def test_P19(): w = symbols('w') M = Matrix([[1, 1, 1, 1], [w, x, y, z], [w**2, x**2, y**2, z**2], [w**3, x**3, y**3, z**3]]) assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2 + w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z + w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3 + w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3 + w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2 + x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3 ) @XFAIL def test_P20(): raise NotImplementedError("Matrix minimal polynomial not supported") def test_P21(): M = Matrix([[5, -3, -7], [-2, 1, 2], [2, -3, -4]]) assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6 def test_P22(): d = 100 M = (2 - x)*eye(d) assert M.eigenvals() == {-x + 2: d} def test_P23(): M = Matrix([ [2, 1, 0, 0, 0], [1, 2, 1, 0, 0], [0, 1, 2, 1, 0], [0, 0, 1, 2, 1], [0, 0, 0, 1, 2]]) assert M.eigenvals() == { S('1'): 1, S('2'): 1, S('3'): 1, S('sqrt(3) + 2'): 1, S('-sqrt(3) + 2'): 1} def test_P24(): M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29], [196, 899, 113, -192, -71, -43, -8, -44], [-192, 113, 899, 196, 61, 49, 8, 52], [ 407, -192, 196, 611, 8, 44, 59, -23], [ -8, -71, 61, 8, 411, -599, 208, 208], [ -52, -43, 49, 44, -599, 411, 208, 208], [ -49, -8, 8, 59, 208, 208, 99, -911], [ 29, -44, 52, -23, 208, 208, -911, 99]]) assert M.eigenvals() == { S('0'): 1, S('10*sqrt(10405)'): 1, S('100*sqrt(26) + 510'): 1, S('1000'): 2, S('-100*sqrt(26) + 510'): 1, S('-10*sqrt(10405)'): 1, S('1020'): 1} def test_P25(): MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29], [ 196, 899, 113, -192, -71, -43, -8, -44], [-192, 113, 899, 196, 61, 49, 8, 52], [ 407, -192, 196, 611, 8, 44, 59, -23], [ -8, -71, 61, 8, 411, -599, 208, 208], [ -52, -43, 49, 44, -599, 411, 208, 208], [ -49, -8, 8, 59, 208, 208, 99, -911], [ 29, -44, 52, -23, 208, 208, -911, 99]])) ev_1 = sorted(MF.eigenvals(multiple=True)) ev_2 = sorted( [-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0, 1000.0, 1019.9019513592784, 1020.0, 1020.0490184299969]) for x, y in zip(ev_1, ev_2): assert abs(x - y) < 1e-12 def test_P26(): a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4') M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0], [ 1, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 1, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, -1, -1, 0, 0], [ 0, 0, 0, 0, 0, 1, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 1, -1, -1], [ 0, 0, 0, 0, 0, 0, 0, 1, 0]]) assert M.eigenvals(error_when_incomplete=False) == { S('-1/2 - sqrt(3)*I/2'): 2, S('-1/2 + sqrt(3)*I/2'): 2} def test_P27(): a = symbols('a') M = Matrix([[a, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, a, 0, 0], [0, 0, 0, a, 0], [0, -2, 0, 0, 2]]) assert M.eigenvects() == [ (a, 3, [ Matrix([1, 0, 0, 0, 0]), Matrix([0, 0, 1, 0, 0]), Matrix([0, 0, 0, 1, 0]) ]), (1 - I, 1, [ Matrix([0, (1 + I)/2, 0, 0, 1]) ]), (1 + I, 1, [ Matrix([0, (1 - I)/2, 0, 0, 1]) ]), ] @XFAIL def test_P28(): raise NotImplementedError("Generalized eigenvectors not supported \ https://github.com/sympy/sympy/issues/5293") @XFAIL def test_P29(): raise NotImplementedError("Generalized eigenvectors not supported \ https://github.com/sympy/sympy/issues/5293") def test_P30(): M = Matrix([[1, 0, 0, 1, -1], [0, 1, -2, 3, -3], [0, 0, -1, 2, -2], [1, -1, 1, 0, 1], [1, -1, 1, -1, 2]]) _, J = M.jordan_form() assert J == Matrix([[-1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1], [0, 0, 0, 0, 1]]) @XFAIL def test_P31(): raise NotImplementedError("Smith normal form not implemented") def test_P32(): M = Matrix([[1, -2], [2, 1]]) assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)], [E*sin(2), E*cos(2)]]) def test_P33(): w, t = symbols('w t') M = Matrix([[0, 1, 0, 0], [0, 0, 0, 2*w], [0, 0, 0, 1], [0, -2*w, 3*w**2, 0]]) assert exp(M*t).rewrite(cos).expand() == Matrix([ [1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w], [0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)], [0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w], [0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]]) @XFAIL def test_P34(): a, b, c = symbols('a b c', real=True) M = Matrix([[a, 1, 0, 0, 0, 0], [0, a, 0, 0, 0, 0], [0, 0, b, 0, 0, 0], [0, 0, 0, c, 1, 0], [0, 0, 0, 0, c, 1], [0, 0, 0, 0, 0, c]]) # raises exception, sin(M) not supported. exp(M*I) also not supported # https://github.com/sympy/sympy/issues/6218 assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0], [0, sin(a), 0, 0, 0, 0], [0, 0, sin(b), 0, 0, 0], [0, 0, 0, sin(c), cos(c), -sin(c)/2], [0, 0, 0, 0, sin(c), cos(c)], [0, 0, 0, 0, 0, sin(c)]]) @XFAIL def test_P35(): M = pi/2*Matrix([[2, 1, 1], [2, 3, 2], [1, 1, 2]]) # raises exception, sin(M) not supported. exp(M*I) also not supported # https://github.com/sympy/sympy/issues/6218 assert sin(M) == eye(3) @XFAIL def test_P36(): M = Matrix([[10, 7], [7, 17]]) assert sqrt(M) == Matrix([[3, 1], [1, 4]]) def test_P37(): M = Matrix([[1, 1, 0], [0, 1, 0], [0, 0, 1]]) assert M**S.Half == Matrix([[1, R(1, 2), 0], [0, 1, 0], [0, 0, 1]]) @XFAIL def test_P38(): M=Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) with raises(AssertionError): # raises ValueError: Matrix det == 0; not invertible M**S.Half # if it doesn't raise then this assertion will be # raised and the test will be flagged as not XFAILing assert None @XFAIL def test_P39(): """ M=Matrix([ [1, 1], [2, 2], [3, 3]]) M.SVD() """ raise NotImplementedError("Singular value decomposition not implemented") def test_P40(): r, t = symbols('r t', real=True) M = Matrix([r*cos(t), r*sin(t)]) assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)], [sin(t), r*cos(t)]]) def test_P41(): r, t = symbols('r t', real=True) assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)], [2*r*cos(t), -r**2*sin(t)]]) def test_P42(): assert wronskian([cos(x), sin(x)], x).simplify() == 1 def test_P43(): def __my_jacobian(M, Y): return Matrix([M.diff(v).T for v in Y]).T r, t = symbols('r t', real=True) M = Matrix([r*cos(t), r*sin(t)]) assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)], [sin(t), r*cos(t)]]) def test_P44(): def __my_hessian(f, Y): V = Matrix([diff(f, v) for v in Y]) return Matrix([V.T.diff(v) for v in Y]) r, t = symbols('r t', real=True) assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([ [ 2*sin(t), 2*r*cos(t)], [2*r*cos(t), -r**2*sin(t)]]) def test_P45(): def __my_wronskian(Y, v): M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))]) return M.det() assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1 # Q1-Q6 Tensor tests missing @XFAIL def test_R1(): i, j, n = symbols('i j n', integer=True, positive=True) xn = MatrixSymbol('xn', n, 1) Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1)) # sum does not calculate # Unknown result Sm.doit() raise NotImplementedError('Unknown result') @XFAIL def test_R2(): m, b = symbols('m b') i, n = symbols('i n', integer=True, positive=True) xn = MatrixSymbol('xn', n, 1) yn = MatrixSymbol('yn', n, 1) f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1)) f1 = diff(f, m) f2 = diff(f, b) # raises TypeError: solveset() takes at most 2 arguments (3 given) solveset((f1, f2), (m, b), domain=S.Reals) @XFAIL def test_R3(): n, k = symbols('n k', integer=True, positive=True) sk = ((-1)**k) * (binomial(2*n, k))**2 Sm = Sum(sk, (k, 1, oo)) T = Sm.doit() T2 = T.combsimp() # returns -((-1)**n*factorial(2*n) # - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2 assert T2 == (-1)**n*binomial(2*n, n) @XFAIL def test_R4(): # Macsyma indefinite sum test case: #(c15) /* Check whether the full Gosper algorithm is implemented # => 1/2^(n + 1) binomial(n, k - 1) */ #closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k)); #Time= 2690 msecs # (- n + k - 1) binomial(n + 1, k) #(d15) - -------------------------------- # n # 2 2 (n + 1) # #(c16) factcomb(makefact(%)); #Time= 220 msecs # n! #(d16) ---------------- # n # 2 k! 2 (n - k)! # Might be possible after fixing https://github.com/sympy/sympy/pull/1879 raise NotImplementedError("Indefinite sum not supported") @XFAIL def test_R5(): a, b, c, n, k = symbols('a b c n k', integer=True, positive=True) sk = ((-1)**k)*(binomial(a + b, a + k) *binomial(b + c, b + k)*binomial(c + a, c + k)) Sm = Sum(sk, (k, 1, oo)) T = Sm.doit() # hypergeometric series not calculated assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c)) def test_R6(): n, k = symbols('n k', integer=True, positive=True) gn = MatrixSymbol('gn', n + 2, 1) Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1)) assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0] def test_R7(): n, k = symbols('n k', integer=True, positive=True) T = Sum(k**3,(k,1,n)).doit() assert T.factor() == n**2*(n + 1)**2/4 @XFAIL def test_R8(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(k**2*binomial(n, k), (k, 1, n)) T = Sm.doit() #returns Piecewise function assert T.combsimp() == n*(n + 1)*2**(n - 2) def test_R9(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1)) assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1) @XFAIL def test_R10(): n, m, r, k = symbols('n m r k', integer=True, positive=True) Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r)) T = Sm.doit() T2 = T.combsimp().rewrite(factorial) assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r)) assert T2 == binomial(m + n, r).rewrite(factorial) # rewrite(binomial) is not working. # https://github.com/sympy/sympy/issues/7135 T3 = T2.rewrite(binomial) assert T3 == binomial(m + n, r) @XFAIL def test_R11(): n, k = symbols('n k', integer=True, positive=True) sk = binomial(n, k)*fibonacci(k) Sm = Sum(sk, (k, 0, n)) T = Sm.doit() # Fibonacci simplification not implemented # https://github.com/sympy/sympy/issues/7134 assert T == fibonacci(2*n) @XFAIL def test_R12(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(fibonacci(k)**2, (k, 0, n)) T = Sm.doit() assert T == fibonacci(n)*fibonacci(n + 1) @XFAIL def test_R13(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(sin(k*x), (k, 1, n)) T = Sm.doit() # Sum is not calculated assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2)) @XFAIL def test_R14(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(sin((2*k - 1)*x), (k, 1, n)) T = Sm.doit() # Sum is not calculated assert T.simplify() == sin(n*x)**2/sin(x) @XFAIL def test_R15(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2))) T = Sm.doit() # Sum is not calculated assert T.simplify() == fibonacci(n + 1) def test_R16(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo)) assert Sm.doit() == zeta(3) + pi**2/6 def test_R17(): k = symbols('k', integer=True, positive=True) assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo))) - 2.8469909700078206) < 1e-15 def test_R18(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/(2**k*k**2), (k, 1, oo)) T = Sm.doit() assert T.simplify() == -log(2)**2/2 + pi**2/12 @slow @XFAIL def test_R19(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo)) T = Sm.doit() # assert fails, T not simplified assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12 @XFAIL def test_R20(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n, 4*k), (k, 0, oo)) T = Sm.doit() # assert fails, T not simplified assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2 @XFAIL def test_R21(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo)) T = Sm.doit() # Sum not calculated assert T.simplify() == 1 # test_R22 answer not available in Wester samples # Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k), # (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1? @XFAIL def test_R23(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))* (x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo)) # Missing how to express constraint abs(x*y)<1? T = Sm.doit() # Sum not calculated assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1) def test_R24(): m, k = symbols('m k', integer=True, positive=True) Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo)) assert Sm.doit() == pi/2 def test_S1(): k = symbols('k', integer=True, positive=True) Pr = Product(gamma(k/3), (k, 1, 8)) assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561 def test_S2(): n, k = symbols('n k', integer=True, positive=True) assert Product(k, (k, 1, n)).doit() == factorial(n) def test_S3(): n, k = symbols('n k', integer=True, positive=True) assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2) def test_S4(): n, k = symbols('n k', integer=True, positive=True) assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n def test_S5(): n, k = symbols('n k', integer=True, positive=True) assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() == gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1))) @XFAIL def test_S6(): n, k = symbols('n k', integer=True, positive=True) # Product does not evaluate assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify() == (x**(2*n) - 1)/(x**2 - 1)) @XFAIL def test_S7(): k = symbols('k', integer=True, positive=True) Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == R(2, 3) @XFAIL def test_S8(): k = symbols('k', integer=True, positive=True) Pr = Product(1 - 1/(2*k)**2, (k, 1, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == 2/pi @XFAIL def test_S9(): k = symbols('k', integer=True, positive=True) Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo)) T = Pr.doit() # Product produces 0 # https://github.com/sympy/sympy/issues/7133 assert T.simplify() == sqrt(2) @XFAIL def test_S10(): k = symbols('k', integer=True, positive=True) Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == -1 def test_T1(): assert limit((1 + 1/n)**n, n, oo) == E assert limit((1 - cos(x))/x**2, x, 0) == S.Half def test_T2(): assert limit((3**x + 5**x)**(1/x), x, oo) == 5 def test_T3(): assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1 def test_T4(): assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1)))) - exp(x))/x, x, oo) == -exp(2) def test_T5(): assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2 + 2*exp(exp(3*x**3*log(x))))), x, oo) == R(1, 3) def test_T6(): assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1) def test_T7(): limit(1/n * gamma(n + 1)**(1/n), n, oo) def test_T8(): a, z = symbols('a z', positive=True) assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1 @XFAIL def test_T9(): z, k = symbols('z k', positive=True) # raises NotImplementedError: # Don't know how to calculate the mrv of '(1, k)' assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z) @XFAIL def test_T10(): # No longer raises PoleError, but should return euler-mascheroni constant assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo)) @XFAIL def test_T11(): n, k = symbols('n k', integer=True, positive=True) # evaluates to 0 assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x) def test_T12(): x, t = symbols('x t', real=True) # Does not evaluate the limit but returns an expression with erf assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)), x, 0) == 1 def test_T13(): x = symbols('x', real=True) assert [limit(x/abs(x), x, 0, dir='-'), limit(x/abs(x), x, 0, dir='+')] == [-1, 1] def test_T14(): x = symbols('x', real=True) assert limit(atan(-log(x)), x, 0, dir='+') == pi/2 def test_U1(): x = symbols('x', real=True) assert diff(abs(x), x) == sign(x) def test_U2(): f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0))) assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0)) def test_U3(): f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1))) f1 = Lambda(x, diff(f(x), x)) assert f1(x) == 3*x**2 assert f1(1) == 3 @XFAIL def test_U4(): n = symbols('n', integer=True, positive=True) x = symbols('x', real=True) d = diff(x**n, x, n) assert d.rewrite(factorial) == factorial(n) def test_U5(): # issue 6681 t = symbols('t') ans = ( Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) + Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2) assert f(g(t)).diff(t, 2) == ans assert ans.doit() == ans def test_U6(): h = Function('h') T = integrate(f(y), (y, h(x), g(x))) assert T.diff(x) == ( f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x)) @XFAIL def test_U7(): p, t = symbols('p t', real=True) # Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT # raises ValueError: Since there is more than one variable in the # expression, the variable(s) of differentiation must be supplied to # differentiate f(p,t) diff(f(p, t)) def test_U8(): x, y = symbols('x y', real=True) eq = cos(x*y) + x # If SymPy had implicit_diff() function this hack could be avoided # TODO: Replace solve with solveset, current test fails for solveset assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1) def test_U9(): # Wester sample case for Maple: # O29 := diff(f(x, y), x) + diff(f(x, y), y); # /d \ /d \ # |-- f(x, y)| + |-- f(x, y)| # \dx / \dy / # # O30 := factor(subs(f(x, y) = g(x^2 + y^2), %)); # 2 2 # 2 D(g)(x + y ) (x + y) x, y = symbols('x y', real=True) su = diff(f(x, y), x) + diff(f(x, y), y) s2 = su.subs(f(x, y), g(x**2 + y**2)) s3 = s2.doit().factor() # Subs not performed, s3 = 2*(x + y)*Subs(Derivative( # g(_xi_1), _xi_1), _xi_1, x**2 + y**2) # Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy, # and probably will remain that way. You can take derivatives with respect # to other expressions only if they are atomic, like a symbol or a # function. # D operator should be added to SymPy # See https://github.com/sympy/sympy/issues/4719. assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2 def test_U10(): # see issue 2519: assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == R(-9, 4) @XFAIL def test_U11(): # assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz raise NotImplementedError @XFAIL def test_U12(): # Wester sample case: # (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy) # => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */ # factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy)); # 4 # (d41) (10 x y + 15 x + 8) dx dy dz raise NotImplementedError( "External diff of differential form not supported") def test_U13(): assert minimum(x**4 - x + 1, x) == -3*2**R(1,3)/8 + 1 @XFAIL def test_U14(): #f = 1/(x**2 + y**2 + 1) #assert [minimize(f), maximize(f)] == [0,1] raise NotImplementedError("minimize(), maximize() not supported") @XFAIL def test_U15(): raise NotImplementedError("minimize() not supported and also solve does \ not support multivariate inequalities") @XFAIL def test_U16(): raise NotImplementedError("minimize() not supported in SymPy and also \ solve does not support multivariate inequalities") @XFAIL def test_U17(): raise NotImplementedError("Linear programming, symbolic simplex not \ supported in SymPy") def test_V1(): x = symbols('x', real=True) assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True)) def test_V2(): assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x ) == Piecewise((-x**2/2, x < 0), (x**2/2, True)) def test_V3(): assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2) def test_V4(): assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2) @XFAIL def test_V5(): # Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1)) assert (integrate((3*x - 5)**2/(2*x - 1)**R(7, 2), x).simplify() == (-41 + 80*x - 45*x**2)/(5*(2*x - 1)**R(5, 2))) @XFAIL def test_V6(): # returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*( log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m)) def test_V7(): r1 = integrate(sinh(x)**4/cosh(x)**2) assert r1.simplify() == x*R(-3, 2) + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2 @XFAIL def test_V8_V9(): #Macsyma test case: #(c27) /* This example involves several symbolic parameters # => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/ # [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2) # [Gradshteyn and Ryzhik 2.553(3)] */ #assume(b^2 > a^2)$ #(c28) integrate(1/(a + b*cos(x)), x); #(c29) trigsimp(ratsimp(diff(%, x))); # 1 #(d29) ------------ # b cos(x) + a raise NotImplementedError( "Integrate with assumption not supported") def test_V10(): assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(4*tan(x/2) + 3)/4 def test_V11(): r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x) r2 = factor(r1) assert (logcombine(r2, force=True) == log(((tan(x/2) + 1)/(tan(x/2) + 7))**R(1, 3))) def test_V12(): r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x) assert r1 == -1/(tan(x/2) + 2) @XFAIL def test_V13(): r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x) # expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3 # - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11 assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11 @slow @XFAIL def test_V14(): r1 = integrate(log(abs(x**2 - y**2)), x) # Piecewise result does not simplify to the desired result. assert (r1.simplify() == x*log(abs(x**2 - y**2)) + y*log(x + y) - y*log(x - y) - 2*x) def test_V15(): r1 = integrate(x*acot(x/y), x) assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0 @XFAIL def test_V16(): # Integral not calculated assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10 @XFAIL def test_V17(): r1 = integrate((diff(f(x), x)*g(x) - f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x) # integral not calculated assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0 @XFAIL def test_W1(): # The function has a pole at y. # The integral has a Cauchy principal value of zero but SymPy returns -I*pi # https://github.com/sympy/sympy/issues/7159 assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0 @XFAIL def test_W2(): # The function has a pole at y. # The integral is divergent but SymPy returns -2 # https://github.com/sympy/sympy/issues/7160 # Test case in Macsyma: # (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1)); # Integral is divergent assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) is zoo @XFAIL @slow def test_W3(): # integral is not calculated # https://github.com/sympy/sympy/issues/7161 assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == R(4, 3) @XFAIL @slow def test_W4(): # integral is not calculated assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + R(4, 3) @XFAIL @slow def test_W5(): # integral is not calculated assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + R(8, 3) @XFAIL @slow def test_W6(): # integral is not calculated assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, pi*R(-3, 4), -pi/4)) == sqrt(2) def test_W7(): a = symbols('a', positive=True) r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo)) assert r1.simplify() == pi*exp(-a)/a @XFAIL def test_W8(): # Test case in Mathematica: # In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity}, # Assumptions -> 0 < a < 1] # Out[19]= Pi Csc[a Pi] raise NotImplementedError( "Integrate with assumption 0 < a < 1 not supported") @XFAIL @slow def test_W9(): # Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)] # (principal value) [Levinson and Redheffer, p. 234] *) r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo)) r2 = r1.doit() assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8)) @XFAIL def test_W10(): # integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) = # 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1]) # [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */ r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo)) r2 = r1.doit() assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(pi*R(2, 5))/5 @XFAIL def test_W11(): # integral not calculated assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) == pi*(-1 + sqrt(2))) def test_W12(): p = symbols('p', positive=True) q = symbols('q', real=True) r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo)) assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**R(3, 2) @XFAIL def test_W13(): # Integral not calculated. Expected result is 2*(Euler_mascheroni_constant) r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1)) assert r1 == 2*EulerGamma def test_W14(): assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0 @XFAIL def test_W15(): # integral not calculated assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == R(1, 12) def test_W16(): assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x), (x, -1, 1)) == R(36, 35) def test_W17(): a, b = symbols('a b', positive=True) assert integrate(exp(-a*x)*besselj(0, b*x), (x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1)) def test_W18(): assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi) @XFAIL def test_W19(): # Integral not calculated # Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)] assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7 @XFAIL def test_W20(): # integral not calculated assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) == -pi**2/36 - R(17, 108) + zeta(3)/4 + (-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9) def test_W21(): assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1))) - 0.210882859565594) < 1e-15 def test_W22(): t, u = symbols('t u', real=True) s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True))) assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise( (0, u < 0), (-sin(Min(1, u)) + sin(Min(2, u)), True)) @slow def test_W23(): a, b = symbols('a b', positive=True) r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo)) assert r1.collect(pi).cancel() == -pi*a + pi*b def test_W23b(): # like W23 but limits are reversed a, b = symbols('a b', positive=True) r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b)) assert r2.collect(pi) == pi*(-a + b) @XFAIL @slow def test_W24(): if ON_CI: skip("Too slow for CI.") # Not that slow, but does not fully evaluate so simplify is slow. # Maybe also require doit() x, y = symbols('x y', real=True) r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1)) assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0 @XFAIL @slow def test_W25(): if ON_CI: skip("Too slow for CI.") a, x, y = symbols('a x y', real=True) i1 = integrate( sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2), (x, 0, pi/2)) i2 = integrate(i1, (y, 0, pi/2)) assert (i2 - pi*a/2).simplify() == 0 def test_W26(): x, y = symbols('x y', real=True) assert integrate(integrate(abs(y - x**2), (y, 0, 2)), (x, -1, 1)) == R(46, 15) def test_W27(): a, b, c = symbols('a b c') assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))), (y, 0, b*(1 - x/a))), (x, 0, a)) == a*b*c/6 def test_X1(): v, c = symbols('v c', real=True) assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) == 5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8)) def test_X2(): v, c = symbols('v c', real=True) s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8) def test_X3(): s1 = (sin(x).series()/cos(x).series()).series() s2 = tan(x).series() assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6) assert s1 == s2 def test_X4(): s1 = log(sin(x)/x).series() assert s1 == -x**2/6 - x**4/180 + O(x**6) assert log(series(sin(x)/x)).series() == s1 @XFAIL def test_X5(): # test case in Mathematica syntax: # In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)] # + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *) # In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}] # Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x] # In[23]:= Series[%, {x, d, 1}] # Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) + # 2 2 # (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x] h = Function('h') a, b, c, d = symbols('a b c d', real=True) # series() raises NotImplementedError: # The _eval_nseries method should be added to to give terms up to O(x**n) at x=0 series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)), x, x0=d, n=2) # assert missing, until exception is removed def test_X6(): # Taylor series of nonscalar objects (noncommutative multiplication) # expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg] a, b = symbols('a b', commutative=False, scalar=False) assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) == x**2*(-a*b/2 + b*a/2) + O(x**3)) def test_X7(): # => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity ) # = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6) # [Levinson and Redheffer, p. 173] assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) + R(1, 12) - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7)) def test_X8(): # Puiseux series (terms with fractional degree): # => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2)) # see issue 7167: x = symbols('x', real=True) assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) == 1/sqrt(x - pi*R(3, 2)) + (x - pi*R(3, 2))**R(3, 2)/12 + (x - pi*R(3, 2))**R(7, 2)/160 + O((x - pi*R(3, 2))**4, (x, pi*R(3, 2)))) def test_X9(): assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 + x**3*log(x)**3/6 + O(x**4*log(x)**4)) def test_X10(): z, w = symbols('z w') assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) == log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2)) def test_X11(): z, w = symbols('z w') assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) == log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2)) @XFAIL def test_X12(): # Look at the generalized Taylor series around x = 1 # Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)] a, b, x = symbols('a b x', real=True) # series returns O(log(x-1)**2) # https://github.com/sympy/sympy/issues/7168 assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) == (x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2))) def test_X13(): assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo)) @XFAIL def test_X14(): # Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385] assert series(1/2**(2*n)*binomial(2*n, n), n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo)) @SKIP("https://github.com/sympy/sympy/issues/7164") def test_X15(): # => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544] x, t = symbols('x t', real=True) # raises RuntimeError: maximum recursion depth exceeded # https://github.com/sympy/sympy/issues/7164 # 2019-02-17: Raises # PoleError: # Asymptotic expansion of Ei around [-oo] is not implemented. e1 = integrate(exp(-t)/t, (t, x, oo)) assert (series(e1, x, x0=oo, n=5) == 6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo))) def test_X16(): # Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4) assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 + O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y)) @XFAIL def test_X17(): # Power series (compute the general formula) # (c41) powerseries(log(sin(x)/x), x, 0); # /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded. # inf # ==== i1 2 i1 2 i1 # \ (- 1) 2 bern(2 i1) x # (d41) > ------------------------------ # / 2 i1 (2 i1)! # ==== # i1 = 1 # fps does not calculate assert fps(log(sin(x)/x)) == \ Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo)) @XFAIL def test_X18(): # Power series (compute the general formula). Maple FPS: # > FormalPowerSeries(exp(-x)*sin(x), x = 0); # infinity # ----- (1/2 k) k # \ 2 sin(3/4 k Pi) x # ) ------------------------- # / k! # ----- # # Now, SymPy returns # oo # _____ # \ ` # \ / k k\ # \ k |I*(-1 - I) I*(-1 + I) | # \ x *|----------- - -----------| # / \ 2 2 / # / ------------------------------ # / k! # /____, # k = 0 k = Dummy('k') assert fps(exp(-x)*sin(x)) == \ Sum(2**(S.Half*k)*sin(R(3, 4)*k*pi)*x**k/factorial(k), (k, 0, oo)) @XFAIL def test_X19(): # (c45) /* Derive an explicit Taylor series solution of y as a function of # x from the following implicit relation: # y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 + # 17/10 (x - 1)^5 + ... # */ # x = sin(y) + cos(y); # Time= 0 msecs # (d45) x = sin(y) + cos(y) # # (c46) taylor_revert(%, y, 7); raise NotImplementedError("Solve using series not supported. \ Inverse Taylor series expansion also not supported") @XFAIL def test_X20(): # Pade (rational function) approximation => (2 - x)/(2 + x) # > numapprox[pade](exp(-x), x = 0, [1, 1]); # bytes used=9019816, alloc=3669344, time=13.12 # 1 - 1/2 x # --------- # 1 + 1/2 x # mpmath support numeric Pade approximant but there is # no symbolic implementation in SymPy # https://en.wikipedia.org/wiki/Pad%C3%A9_approximant raise NotImplementedError("Symbolic Pade approximant not supported") def test_X21(): """ Test whether `fourier_series` of x periodical on the [-p, p] interval equals `- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`. """ p = symbols('p', positive=True) n = symbols('n', positive=True, integer=True) s = fourier_series(x, (x, -p, p)) # All cosine coefficients are equal to 0 assert s.an.formula == 0 # Check for sine coefficients assert s.bn.formula.subs(s.bn.variables[0], 0) == 0 assert s.bn.formula.subs(s.bn.variables[0], n) == \ -2*p/pi * (-1)**n / n * sin(n*pi*x/p) @XFAIL def test_X22(): # (c52) /* => p / 2 # - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2, # n = 1..infinity ) */ # fourier_series(abs(x), x, p); # p # (e52) a = - # 0 2 # # %nn # (2 (- 1) - 2) p # (e53) a = ------------------ # %nn 2 2 # %pi %nn # # (e54) b = 0 # %nn # # Time= 5290 msecs # inf %nn %pi %nn x # ==== (2 (- 1) - 2) cos(---------) # \ p # p > ------------------------------- # / 2 # ==== %nn # %nn = 1 p # (d54) ----------------------------------------- + - # 2 2 # %pi raise NotImplementedError("Fourier series not supported") def test_Y1(): t = symbols('t', positive=True) w = symbols('w', real=True) s = symbols('s') F, _, _ = laplace_transform(cos((w - 1)*t), t, s) assert F == s/(s**2 + (w - 1)**2) def test_Y2(): t = symbols('t', positive=True) w = symbols('w', real=True) s = symbols('s') f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t, simplify=True) assert f == cos(t*(w - 1)) def test_Y3(): t = symbols('t', positive=True) w = symbols('w', real=True) s = symbols('s') F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s, simplify=True) assert F == w/(s**2 - 4*w**2) def test_Y4(): t = symbols('t', positive=True) s = symbols('s') F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s, simplify=True) assert F == 1/s - exp(-6*sqrt(s))/s def test_Y5_Y6(): # Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the # Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and # duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T. # Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing # Company, 1983, p. 211. First, take the Laplace transform of the ODE # => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)] # where Y(s) is the Laplace transform of y(t) t = symbols('t', positive=True) s = symbols('s') y = Function('y') F, _, _ = laplace_transform(diff(y(t), t, 2) + y(t) - 4*(Heaviside(t - 1) - Heaviside(t - 2)), t, s, simplify=True) D = (F - (s**2*LaplaceTransform(y(t), t, s) - s*y(0) + LaplaceTransform(y(t), t, s) - Subs(Derivative(y(t), t), t, 0) + 4*(1 - exp(s))*exp(-2*s)/s)).simplify(doit=False) assert D == 0 # TODO implement second part of test case # Now, solve for Y(s) and then take the inverse Laplace transform # => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)] # => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)} @XFAIL def test_Y7(): # What is the Laplace transform of an infinite square wave? # => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity ) # [Sanchez, Allen and Kyner, p. 213] t = symbols('t', positive=True) a = symbols('a', real=True) s = symbols('s') F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a), (n, 1, oo)), t, s) # returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t), # (n, 1, oo)), t, s) + 1/s # https://github.com/sympy/sympy/issues/7177 assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s @XFAIL def test_Y8(): assert fourier_transform(1, x, z) == DiracDelta(z) def test_Y9(): assert (fourier_transform(exp(-9*x**2), x, z) == sqrt(pi)*exp(-pi**2*z**2/9)/3) def test_Y10(): assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z).cancel() == (-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81)) @SKIP("https://github.com/sympy/sympy/issues/7181") @slow def test_Y11(): # => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)] x, s = symbols('x s') # raises RuntimeError: maximum recursion depth exceeded # https://github.com/sympy/sympy/issues/7181 # Update 2019-02-17 raises: # TypeError: cannot unpack non-iterable MellinTransform object F, _, _ = mellin_transform(1/(1 - x), x, s) assert F == pi*cot(pi*s) @XFAIL def test_Y12(): # => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1) # [Gradshteyn and Ryzhik 17.43(16)] x, s = symbols('x s') # returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1) # https://github.com/sympy/sympy/issues/7182 F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s) assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4) @XFAIL def test_Y13(): # Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z raise NotImplementedError("z-transform not supported") @XFAIL def test_Y14(): # Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) raise NotImplementedError("z-transform not supported") def test_Z1(): r = Function('r') assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n), {r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1) def test_Z2(): r = Function('r') assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1}) == -2**n + 3**n) def test_Z3(): # => r(n) = Fibonacci[n + 1] [Cohen, p. 83] r = Function('r') # recurrence solution is correct, Wester expects it to be simplified to # fibonacci(n+1), but that is quite hard expected = ((S(1)/2 - sqrt(5)/2)**n*(S(1)/2 - sqrt(5)/10) + (S(1)/2 + sqrt(5)/2)**n*(sqrt(5)/10 + S(1)/2)) sol = rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n), {r(1): 1, r(2): 2}) assert sol == expected @XFAIL def test_Z4(): # => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)] # [Joan Z. Yu and Robert Israel in sci.math.symbolic] r = Function('r') c = symbols('c') # raises ValueError: Polynomial or rational function expected, # got '(c**2 - c**n)/(c - c**n) s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1) - c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1), r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)}) assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) + (n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0) @XFAIL def test_Z5(): # Second order ODE with initial conditions---solve directly # transform: f(t) = sin(2 t)/8 - t cos(2 t)/4 C1, C2 = symbols('C1 C2') # initial conditions not supported, this is a manual workaround # https://github.com/sympy/sympy/issues/4720 eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x) sol = dsolve(eq, f(x)) f0 = Lambda(x, sol.rhs) assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x) f1 = Lambda(x, diff(f0(x), x)) # TODO: Replace solve with solveset, when it works for solveset const_dict = solve((f0(0), f1(0))) result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2]) assert result == -x*cos(2*x)/4 + sin(2*x)/8 # Result is OK, but ODE solving with initial conditions should be # supported without all this manual work raise NotImplementedError('ODE solving with initial conditions \ not supported') @XFAIL def test_Z6(): # Second order ODE with initial conditions---solve using Laplace # transform: f(t) = sin(2 t)/8 - t cos(2 t)/4 t = symbols('t', positive=True) s = symbols('s') eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t) F, _, _ = laplace_transform(eq, t, s) # Laplace transform for diff() not calculated # https://github.com/sympy/sympy/issues/7176 assert (F == s**2*LaplaceTransform(f(t), t, s) + 4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4)) # rest of test case not implemented