from collections import namedtuple import torch from torch import Tensor from typing import List, Sequence from . import Sequential, ModuleList, Linear from .module import Module from ..functional import log_softmax __all__ = ['AdaptiveLogSoftmaxWithLoss'] _ASMoutput = namedtuple('_ASMoutput', ['output', 'loss']) class AdaptiveLogSoftmaxWithLoss(Module): r"""Efficient softmax approximation. As described in `Efficient softmax approximation for GPUs by Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou `__. Adaptive softmax is an approximate strategy for training models with large output spaces. It is most effective when the label distribution is highly imbalanced, for example in natural language modelling, where the word frequency distribution approximately follows the `Zipf's law`_. Adaptive softmax partitions the labels into several clusters, according to their frequency. These clusters may contain different number of targets each. Additionally, clusters containing less frequent labels assign lower dimensional embeddings to those labels, which speeds up the computation. For each minibatch, only clusters for which at least one target is present are evaluated. The idea is that the clusters which are accessed frequently (like the first one, containing most frequent labels), should also be cheap to compute -- that is, contain a small number of assigned labels. We highly recommend taking a look at the original paper for more details. * :attr:`cutoffs` should be an ordered Sequence of integers sorted in the increasing order. It controls number of clusters and the partitioning of targets into clusters. For example setting ``cutoffs = [10, 100, 1000]`` means that first `10` targets will be assigned to the 'head' of the adaptive softmax, targets `11, 12, ..., 100` will be assigned to the first cluster, and targets `101, 102, ..., 1000` will be assigned to the second cluster, while targets `1001, 1002, ..., n_classes - 1` will be assigned to the last, third cluster. * :attr:`div_value` is used to compute the size of each additional cluster, which is given as :math:`\left\lfloor\frac{\texttt{in\_features}}{\texttt{div\_value}^{idx}}\right\rfloor`, where :math:`idx` is the cluster index (with clusters for less frequent words having larger indices, and indices starting from :math:`1`). * :attr:`head_bias` if set to True, adds a bias term to the 'head' of the adaptive softmax. See paper for details. Set to False in the official implementation. .. warning:: Labels passed as inputs to this module should be sorted according to their frequency. This means that the most frequent label should be represented by the index `0`, and the least frequent label should be represented by the index `n_classes - 1`. .. note:: This module returns a ``NamedTuple`` with ``output`` and ``loss`` fields. See further documentation for details. .. note:: To compute log-probabilities for all classes, the ``log_prob`` method can be used. Args: in_features (int): Number of features in the input tensor n_classes (int): Number of classes in the dataset cutoffs (Sequence): Cutoffs used to assign targets to their buckets div_value (float, optional): value used as an exponent to compute sizes of the clusters. Default: 4.0 head_bias (bool, optional): If ``True``, adds a bias term to the 'head' of the adaptive softmax. Default: ``False`` Returns: ``NamedTuple`` with ``output`` and ``loss`` fields: * **output** is a Tensor of size ``N`` containing computed target log probabilities for each example * **loss** is a Scalar representing the computed negative log likelihood loss Shape: - input: :math:`(N, \texttt{in\_features})` or :math:`(\texttt{in\_features})` - target: :math:`(N)` or :math:`()` where each value satisfies :math:`0 <= \texttt{target[i]} <= \texttt{n\_classes}` - output1: :math:`(N)` or :math:`()` - output2: ``Scalar`` .. _Zipf's law: https://en.wikipedia.org/wiki/Zipf%27s_law """ in_features: int n_classes: int cutoffs: List[int] div_value: float head_bias: bool head: Linear tail: ModuleList def __init__( self, in_features: int, n_classes: int, cutoffs: Sequence[int], div_value: float = 4., head_bias: bool = False, device=None, dtype=None ) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() cutoffs = list(cutoffs) if (len(cutoffs) == 0): raise ValueError("cutoffs should be a sequence of length larger than 0") if (cutoffs != sorted(cutoffs)) \ or (min(cutoffs) <= 0) \ or (max(cutoffs) > (n_classes - 1)) \ or (len(set(cutoffs)) != len(cutoffs)) \ or any(int(c) != c for c in cutoffs): raise ValueError("cutoffs should be a sequence of unique, positive " "integers sorted in an increasing order, where " "each value is between 1 and n_classes-1") self.in_features = in_features self.n_classes = n_classes self.cutoffs = cutoffs + [n_classes] self.div_value = div_value self.head_bias = head_bias self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters self.head = Linear(self.in_features, self.head_size, bias=self.head_bias, **factory_kwargs) self.tail = ModuleList() for i in range(self.n_clusters): hsz = int(self.in_features // (self.div_value ** (i + 1))) osz = self.cutoffs[i + 1] - self.cutoffs[i] projection = Sequential( Linear(self.in_features, hsz, bias=False, **factory_kwargs), Linear(hsz, osz, bias=False, **factory_kwargs), ) self.tail.append(projection) def reset_parameters(self) -> None: self.head.reset_parameters() for i2h, h2o in self.tail: i2h.reset_parameters() h2o.reset_parameters() def forward(self, input_: Tensor, target_: Tensor) -> _ASMoutput: targ_dim = target_.dim() if targ_dim == 1: if input_.size(0) != target_.size(0): raise RuntimeError('Input and target should have the same size ' 'in the batch dimension.') if input_.dim() != 2: raise RuntimeError('1D target tensor expects 2D input tensors, ' 'but found inputs with size', input_.size()) elif targ_dim == 0: if input_.dim() != 1: raise RuntimeError('0D target tensor expects 1D input tensors, ' 'but found inputs with size', input_.size()) else: raise RuntimeError('0D or 1D target tensor expected, ' 'multi-target not supported') is_batched = targ_dim > 0 input = input_ if is_batched else input_.unsqueeze(0) target = target_ if is_batched else target_.unsqueeze(0) used_rows = 0 batch_size = target.size(0) output = input.new_zeros(batch_size) gather_inds = target.new_empty(batch_size) cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): low_idx = cutoff_values[i] high_idx = cutoff_values[i + 1] target_mask = (target >= low_idx) & (target < high_idx) row_indices = target_mask.nonzero().squeeze() if row_indices.numel() == 0: continue if i == 0: gather_inds.index_copy_(0, row_indices, target[target_mask]) else: relative_target = target[target_mask] - low_idx input_subset = input.index_select(0, row_indices) cluster_output = self.tail[i - 1](input_subset) cluster_index = self.shortlist_size + i - 1 gather_inds.index_fill_(0, row_indices, cluster_index) cluster_logprob = log_softmax(cluster_output, dim=1) local_logprob = cluster_logprob.gather(1, relative_target.unsqueeze(1)) output.index_copy_(0, row_indices, local_logprob.squeeze(1)) used_rows += row_indices.numel() if used_rows != batch_size: raise RuntimeError(f"Target values should be in [0, {self.n_classes - 1}], " f"but values in range [{target.min().item()}, {target.max().item()}] " "were found. ") head_output = self.head(input) head_logprob = log_softmax(head_output, dim=1) output += head_logprob.gather(1, gather_inds.unsqueeze(1)).squeeze() loss = (-output).mean() if not is_batched: output = output.squeeze(0) return _ASMoutput(output, loss) def _get_full_log_prob(self, input, head_output): """Given input tensor, and output of ``self.head``, compute the log of the full distribution.""" out = input.new_empty((head_output.size(0), self.n_classes)) head_logprob = log_softmax(head_output, dim=1) out[:, :self.shortlist_size] = head_logprob[:, :self.shortlist_size] for i, (start_idx, stop_idx) in enumerate(zip(self.cutoffs, self.cutoffs[1:])): cluster_output = self.tail[i](input) cluster_logprob = log_softmax(cluster_output, dim=1) output_logprob = cluster_logprob + head_logprob[:, self.shortlist_size + i].unsqueeze(1) out[:, start_idx:stop_idx] = output_logprob return out def log_prob(self, input: Tensor) -> Tensor: r"""Compute log probabilities for all :math:`\texttt{n\_classes}`. Args: input (Tensor): a minibatch of examples Returns: log-probabilities of for each class :math:`c` in range :math:`0 <= c <= \texttt{n\_classes}`, where :math:`\texttt{n\_classes}` is a parameter passed to ``AdaptiveLogSoftmaxWithLoss`` constructor. Shape: - Input: :math:`(N, \texttt{in\_features})` - Output: :math:`(N, \texttt{n\_classes})` """ head_output = self.head(input) return self._get_full_log_prob(input, head_output) def predict(self, input: Tensor) -> Tensor: r"""Return the class with the highest probability for each example in the input minibatch. This is equivalent to ``self.log_prob(input).argmax(dim=1)``, but is more efficient in some cases. Args: input (Tensor): a minibatch of examples Returns: output (Tensor): a class with the highest probability for each example Shape: - Input: :math:`(N, \texttt{in\_features})` - Output: :math:`(N)` """ head_output = self.head(input) output = torch.argmax(head_output, dim=1) not_in_shortlist = (output >= self.shortlist_size) all_in_shortlist = not (not_in_shortlist.any()) if all_in_shortlist: return output elif not_in_shortlist.all(): log_prob = self._get_full_log_prob(input, head_output) return torch.argmax(log_prob, dim=1) else: log_prob = self._get_full_log_prob(input[not_in_shortlist], head_output[not_in_shortlist]) output[not_in_shortlist] = torch.argmax(log_prob, dim=1) return output