import contextlib import functools import hashlib import os import re import sys import textwrap from argparse import Namespace from dataclasses import fields, is_dataclass from enum import auto, Enum from typing import ( Any, Callable, Dict, Generic, Iterable, Iterator, List, Literal, NoReturn, Optional, Sequence, Set, Tuple, TypeVar, Union, ) from typing_extensions import Self from torchgen.code_template import CodeTemplate # Many of these functions share logic for defining both the definition # and declaration (for example, the function signature is the same), so # we organize them into one function that takes a Target to say which # code we want. # # This is an OPEN enum (we may add more cases to it in the future), so be sure # to explicitly specify with Literal[Target.XXX] or Literal[Target.XXX, Target.YYY] # what targets are valid for your use. class Target(Enum): # top level namespace (not including at) DEFINITION = auto() DECLARATION = auto() # TORCH_LIBRARY(...) { ... } REGISTRATION = auto() # namespace { ... } ANONYMOUS_DEFINITION = auto() # namespace cpu { ... } NAMESPACED_DEFINITION = auto() NAMESPACED_DECLARATION = auto() # Matches "foo" in "foo, bar" but not "foobar". Used to search for the # occurrence of a parameter in the derivative formula IDENT_REGEX = r"(^|\W){}($|\W)" # TODO: Use a real parser here; this will get bamboozled def split_name_params(schema: str) -> Tuple[str, List[str]]: m = re.match(r"(\w+)(\.\w+)?\((.*)\)", schema) if m is None: raise RuntimeError(f"Unsupported function schema: {schema}") name, _, params = m.groups() return name, params.split(", ") T = TypeVar("T") S = TypeVar("S") # These two functions purposely return generators in analogy to map() # so that you don't mix up when you need to list() them # Map over function that may return None; omit Nones from output sequence def mapMaybe(func: Callable[[T], Optional[S]], xs: Iterable[T]) -> Iterator[S]: for x in xs: r = func(x) if r is not None: yield r # Map over function that returns sequences and cat them all together def concatMap(func: Callable[[T], Sequence[S]], xs: Iterable[T]) -> Iterator[S]: for x in xs: yield from func(x) # Conveniently add error context to exceptions raised. Lets us # easily say that an error occurred while processing a specific # context. @contextlib.contextmanager def context(msg_fn: Callable[[], str]) -> Iterator[None]: try: yield except Exception as e: # TODO: this does the wrong thing with KeyError msg = msg_fn() msg = textwrap.indent(msg, " ") msg = f"{e.args[0]}\n{msg}" if e.args else msg e.args = (msg,) + e.args[1:] raise # A little trick from https://github.com/python/mypy/issues/6366 # for getting mypy to do exhaustiveness checking # TODO: put this somewhere else, maybe def assert_never(x: NoReturn) -> NoReturn: raise AssertionError(f"Unhandled type: {type(x).__name__}") @functools.lru_cache(maxsize=None) def _read_template(template_fn: str) -> CodeTemplate: return CodeTemplate.from_file(template_fn) # String hash that's stable across different executions, unlike builtin hash def string_stable_hash(s: str) -> int: sha1 = hashlib.sha1(s.encode("latin1")).digest() return int.from_bytes(sha1, byteorder="little") # A small abstraction for writing out generated files and keeping track # of what files have been written (so you can write out a list of output # files) class FileManager: install_dir: str template_dir: str dry_run: bool filenames: Set[str] def __init__(self, install_dir: str, template_dir: str, dry_run: bool) -> None: self.install_dir = install_dir self.template_dir = template_dir self.filenames = set() self.dry_run = dry_run def _write_if_changed(self, filename: str, contents: str) -> None: old_contents: Optional[str] try: with open(filename) as f: old_contents = f.read() except OSError: old_contents = None if contents != old_contents: # Create output directory if it doesn't exist os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w") as f: f.write(contents) # Read from template file and replace pattern with callable (type could be dict or str). def substitute_with_template( self, template_fn: str, env_callable: Callable[[], Union[str, Dict[str, Any]]] ) -> str: template_path = os.path.join(self.template_dir, template_fn) env = env_callable() if isinstance(env, dict): # TODO: Update the comment reference to the correct location if "generated_comment" not in env: comment = "@" + "generated by torchgen/gen.py" comment += f" from {os.path.basename(template_path)}" env["generated_comment"] = comment template = _read_template(template_path) return template.substitute(env) elif isinstance(env, str): return env else: assert_never(env) def write_with_template( self, filename: str, template_fn: str, env_callable: Callable[[], Union[str, Dict[str, Any]]], ) -> None: filename = f"{self.install_dir}/{filename}" assert filename not in self.filenames, "duplicate file write {filename}" self.filenames.add(filename) if not self.dry_run: substitute_out = self.substitute_with_template( template_fn=template_fn, env_callable=env_callable, ) self._write_if_changed(filename=filename, contents=substitute_out) def write( self, filename: str, env_callable: Callable[[], Union[str, Dict[str, Any]]], ) -> None: self.write_with_template(filename, filename, env_callable) def write_sharded( self, filename: str, items: Iterable[T], *, key_fn: Callable[[T], str], env_callable: Callable[[T], Dict[str, List[str]]], num_shards: int, base_env: Optional[Dict[str, Any]] = None, sharded_keys: Set[str], ) -> None: everything: Dict[str, Any] = {"shard_id": "Everything"} shards: List[Dict[str, Any]] = [ {"shard_id": f"_{i}"} for i in range(num_shards) ] all_shards = [everything] + shards if base_env is not None: for shard in all_shards: shard.update(base_env) for key in sharded_keys: for shard in all_shards: if key in shard: assert isinstance( shard[key], list ), "sharded keys in base_env must be a list" shard[key] = shard[key].copy() else: shard[key] = [] def merge_env(into: Dict[str, List[str]], from_: Dict[str, List[str]]) -> None: for k, v in from_.items(): assert k in sharded_keys, f"undeclared sharded key {k}" into[k] += v if self.dry_run: # Dry runs don't write any templates, so incomplete environments are fine items = () for item in items: key = key_fn(item) sid = string_stable_hash(key) % num_shards env = env_callable(item) merge_env(shards[sid], env) merge_env(everything, env) dot_pos = filename.rfind(".") if dot_pos == -1: dot_pos = len(filename) base_filename = filename[:dot_pos] extension = filename[dot_pos:] for shard in all_shards: shard_id = shard["shard_id"] self.write_with_template( f"{base_filename}{shard_id}{extension}", filename, lambda: shard ) # filenames is used to track compiled files, but FooEverything.cpp isn't meant to be compiled self.filenames.discard( f"{self.install_dir}/{base_filename}Everything{extension}" ) def write_outputs(self, variable_name: str, filename: str) -> None: """Write a file containing the list of all outputs which are generated by this script.""" content = "set({}\n {})".format( variable_name, "\n ".join('"' + name + '"' for name in sorted(self.filenames)), ) self._write_if_changed(filename, content) def template_dir_for_comments(self) -> str: """ This needs to be deterministic. The template dir is an absolute path that varies across builds. So, just use the path relative to this file, which will point to the codegen source but will be stable. """ return os.path.relpath(self.template_dir, os.path.dirname(__file__)) # Helper function to generate file manager def make_file_manager( options: Namespace, install_dir: Optional[str] = None ) -> FileManager: template_dir = os.path.join(options.source_path, "templates") install_dir = install_dir if install_dir else options.install_dir return FileManager( install_dir=install_dir, template_dir=template_dir, dry_run=options.dry_run ) # Helper function to create a pretty representation for dataclasses def dataclass_repr( obj: Any, indent: int = 0, width: int = 80, ) -> str: # built-in pprint module support dataclasses from python 3.10 if sys.version_info >= (3, 10): from pprint import pformat return pformat(obj, indent, width) return _pformat(obj, indent=indent, width=width) def _pformat( obj: Any, indent: int, width: int, curr_indent: int = 0, ) -> str: assert is_dataclass(obj), f"obj should be a dataclass, received: {type(obj)}" class_name = obj.__class__.__name__ # update current indentation level with class name curr_indent += len(class_name) + 1 fields_list = [(f.name, getattr(obj, f.name)) for f in fields(obj) if f.repr] fields_str = [] for name, attr in fields_list: # update the current indent level with the field name # dict, list, set and tuple also add indent as done in pprint _curr_indent = curr_indent + len(name) + 1 if is_dataclass(attr): str_repr = _pformat(attr, indent, width, _curr_indent) elif isinstance(attr, dict): str_repr = _format_dict(attr, indent, width, _curr_indent) elif isinstance(attr, (list, set, tuple)): str_repr = _format_list(attr, indent, width, _curr_indent) else: str_repr = repr(attr) fields_str.append(f"{name}={str_repr}") indent_str = curr_indent * " " body = f",\n{indent_str}".join(fields_str) return f"{class_name}({body})" def _format_dict( attr: Dict[Any, Any], indent: int, width: int, curr_indent: int, ) -> str: curr_indent += indent + 3 dict_repr = [] for k, v in attr.items(): k_repr = repr(k) v_str = ( _pformat(v, indent, width, curr_indent + len(k_repr)) if is_dataclass(v) else repr(v) ) dict_repr.append(f"{k_repr}: {v_str}") return _format(dict_repr, indent, width, curr_indent, "{", "}") def _format_list( attr: Union[List[Any], Set[Any], Tuple[Any, ...]], indent: int, width: int, curr_indent: int, ) -> str: curr_indent += indent + 1 list_repr = [ _pformat(l, indent, width, curr_indent) if is_dataclass(l) else repr(l) for l in attr ] start, end = ("[", "]") if isinstance(attr, list) else ("(", ")") return _format(list_repr, indent, width, curr_indent, start, end) def _format( fields_str: List[str], indent: int, width: int, curr_indent: int, start: str, end: str, ) -> str: delimiter, curr_indent_str = "", "" # if it exceed the max width then we place one element per line if len(repr(fields_str)) >= width: delimiter = "\n" curr_indent_str = " " * curr_indent indent_str = " " * indent body = f", {delimiter}{curr_indent_str}".join(fields_str) return f"{start}{indent_str}{body}{end}" class NamespaceHelper: """A helper for constructing the namespace open and close strings for a nested set of namespaces. e.g. for namespace_str torch::lazy, prologue: namespace torch { namespace lazy { epilogue: } // namespace lazy } // namespace torch """ def __init__(self, namespace_str: str, entity_name: str = "", max_level: int = 2): # cpp_namespace can be a colon joined string such as torch::lazy cpp_namespaces = namespace_str.split("::") assert ( len(cpp_namespaces) <= max_level ), f"Codegen doesn't support more than {max_level} level(s) of custom namespace. Got {namespace_str}." self.cpp_namespace_ = namespace_str self.prologue_ = "\n".join([f"namespace {n} {{" for n in cpp_namespaces]) self.epilogue_ = "\n".join( [f"}} // namespace {n}" for n in reversed(cpp_namespaces)] ) self.namespaces_ = cpp_namespaces self.entity_name_ = entity_name @staticmethod def from_namespaced_entity( namespaced_entity: str, max_level: int = 2 ) -> "NamespaceHelper": """ Generate helper from nested namespaces as long as class/function name. E.g.: "torch::lazy::add" """ names = namespaced_entity.split("::") entity_name = names[-1] namespace_str = "::".join(names[:-1]) return NamespaceHelper( namespace_str=namespace_str, entity_name=entity_name, max_level=max_level ) @property def prologue(self) -> str: return self.prologue_ @property def epilogue(self) -> str: return self.epilogue_ @property def entity_name(self) -> str: return self.entity_name_ # Only allow certain level of namespaces def get_cpp_namespace(self, default: str = "") -> str: """ Return the namespace string from joining all the namespaces by "::" (hence no leading "::"). Return default if namespace string is empty. """ return self.cpp_namespace_ if self.cpp_namespace_ else default class OrderedSet(Generic[T]): storage: Dict[T, Literal[None]] def __init__(self, iterable: Optional[Iterable[T]] = None): if iterable is None: self.storage = {} else: self.storage = dict.fromkeys(iterable) def __contains__(self, item: T) -> bool: return item in self.storage def __iter__(self) -> Iterator[T]: return iter(self.storage.keys()) def update(self, items: "OrderedSet[T]") -> None: self.storage.update(items.storage) def add(self, item: T) -> None: self.storage[item] = None def copy(self) -> "OrderedSet[T]": ret: OrderedSet[T] = OrderedSet() ret.storage = self.storage.copy() return ret @staticmethod def union(*args: "OrderedSet[T]") -> "OrderedSet[T]": ret = args[0].copy() for s in args[1:]: ret.update(s) return ret def __or__(self, other: "OrderedSet[T]") -> "OrderedSet[T]": return OrderedSet.union(self, other) def __ior__(self, other: "OrderedSet[T]") -> Self: self.update(other) return self def __eq__(self, other: object) -> bool: if isinstance(other, OrderedSet): return self.storage == other.storage else: return set(self.storage.keys()) == other