327 lines
10 KiB
Python
327 lines
10 KiB
Python
from types import FunctionType
|
|
|
|
from .utilities import _get_intermediate_simp, _iszero, _dotprodsimp, _simplify
|
|
from .determinant import _find_reasonable_pivot
|
|
|
|
|
|
def _row_reduce_list(mat, rows, cols, one, iszerofunc, simpfunc,
|
|
normalize_last=True, normalize=True, zero_above=True):
|
|
"""Row reduce a flat list representation of a matrix and return a tuple
|
|
(rref_matrix, pivot_cols, swaps) where ``rref_matrix`` is a flat list,
|
|
``pivot_cols`` are the pivot columns and ``swaps`` are any row swaps that
|
|
were used in the process of row reduction.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
mat : list
|
|
list of matrix elements, must be ``rows`` * ``cols`` in length
|
|
|
|
rows, cols : integer
|
|
number of rows and columns in flat list representation
|
|
|
|
one : SymPy object
|
|
represents the value one, from ``Matrix.one``
|
|
|
|
iszerofunc : determines if an entry can be used as a pivot
|
|
|
|
simpfunc : used to simplify elements and test if they are
|
|
zero if ``iszerofunc`` returns `None`
|
|
|
|
normalize_last : indicates where all row reduction should
|
|
happen in a fraction-free manner and then the rows are
|
|
normalized (so that the pivots are 1), or whether
|
|
rows should be normalized along the way (like the naive
|
|
row reduction algorithm)
|
|
|
|
normalize : whether pivot rows should be normalized so that
|
|
the pivot value is 1
|
|
|
|
zero_above : whether entries above the pivot should be zeroed.
|
|
If ``zero_above=False``, an echelon matrix will be returned.
|
|
"""
|
|
|
|
def get_col(i):
|
|
return mat[i::cols]
|
|
|
|
def row_swap(i, j):
|
|
mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \
|
|
mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols]
|
|
|
|
def cross_cancel(a, i, b, j):
|
|
"""Does the row op row[i] = a*row[i] - b*row[j]"""
|
|
q = (j - i)*cols
|
|
for p in range(i*cols, (i + 1)*cols):
|
|
mat[p] = isimp(a*mat[p] - b*mat[p + q])
|
|
|
|
isimp = _get_intermediate_simp(_dotprodsimp)
|
|
piv_row, piv_col = 0, 0
|
|
pivot_cols = []
|
|
swaps = []
|
|
|
|
# use a fraction free method to zero above and below each pivot
|
|
while piv_col < cols and piv_row < rows:
|
|
pivot_offset, pivot_val, \
|
|
assumed_nonzero, newly_determined = _find_reasonable_pivot(
|
|
get_col(piv_col)[piv_row:], iszerofunc, simpfunc)
|
|
|
|
# _find_reasonable_pivot may have simplified some things
|
|
# in the process. Let's not let them go to waste
|
|
for (offset, val) in newly_determined:
|
|
offset += piv_row
|
|
mat[offset*cols + piv_col] = val
|
|
|
|
if pivot_offset is None:
|
|
piv_col += 1
|
|
continue
|
|
|
|
pivot_cols.append(piv_col)
|
|
if pivot_offset != 0:
|
|
row_swap(piv_row, pivot_offset + piv_row)
|
|
swaps.append((piv_row, pivot_offset + piv_row))
|
|
|
|
# if we aren't normalizing last, we normalize
|
|
# before we zero the other rows
|
|
if normalize_last is False:
|
|
i, j = piv_row, piv_col
|
|
mat[i*cols + j] = one
|
|
for p in range(i*cols + j + 1, (i + 1)*cols):
|
|
mat[p] = isimp(mat[p] / pivot_val)
|
|
# after normalizing, the pivot value is 1
|
|
pivot_val = one
|
|
|
|
# zero above and below the pivot
|
|
for row in range(rows):
|
|
# don't zero our current row
|
|
if row == piv_row:
|
|
continue
|
|
# don't zero above the pivot unless we're told.
|
|
if zero_above is False and row < piv_row:
|
|
continue
|
|
# if we're already a zero, don't do anything
|
|
val = mat[row*cols + piv_col]
|
|
if iszerofunc(val):
|
|
continue
|
|
|
|
cross_cancel(pivot_val, row, val, piv_row)
|
|
piv_row += 1
|
|
|
|
# normalize each row
|
|
if normalize_last is True and normalize is True:
|
|
for piv_i, piv_j in enumerate(pivot_cols):
|
|
pivot_val = mat[piv_i*cols + piv_j]
|
|
mat[piv_i*cols + piv_j] = one
|
|
for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols):
|
|
mat[p] = isimp(mat[p] / pivot_val)
|
|
|
|
return mat, tuple(pivot_cols), tuple(swaps)
|
|
|
|
|
|
# This functions is a candidate for caching if it gets implemented for matrices.
|
|
def _row_reduce(M, iszerofunc, simpfunc, normalize_last=True,
|
|
normalize=True, zero_above=True):
|
|
|
|
mat, pivot_cols, swaps = _row_reduce_list(list(M), M.rows, M.cols, M.one,
|
|
iszerofunc, simpfunc, normalize_last=normalize_last,
|
|
normalize=normalize, zero_above=zero_above)
|
|
|
|
return M._new(M.rows, M.cols, mat), pivot_cols, swaps
|
|
|
|
|
|
def _is_echelon(M, iszerofunc=_iszero):
|
|
"""Returns `True` if the matrix is in echelon form. That is, all rows of
|
|
zeros are at the bottom, and below each leading non-zero in a row are
|
|
exclusively zeros."""
|
|
|
|
if M.rows <= 0 or M.cols <= 0:
|
|
return True
|
|
|
|
zeros_below = all(iszerofunc(t) for t in M[1:, 0])
|
|
|
|
if iszerofunc(M[0, 0]):
|
|
return zeros_below and _is_echelon(M[:, 1:], iszerofunc)
|
|
|
|
return zeros_below and _is_echelon(M[1:, 1:], iszerofunc)
|
|
|
|
|
|
def _echelon_form(M, iszerofunc=_iszero, simplify=False, with_pivots=False):
|
|
"""Returns a matrix row-equivalent to ``M`` that is in echelon form. Note
|
|
that echelon form of a matrix is *not* unique, however, properties like the
|
|
row space and the null space are preserved.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> M = Matrix([[1, 2], [3, 4]])
|
|
>>> M.echelon_form()
|
|
Matrix([
|
|
[1, 2],
|
|
[0, -2]])
|
|
"""
|
|
|
|
simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify
|
|
|
|
mat, pivots, _ = _row_reduce(M, iszerofunc, simpfunc,
|
|
normalize_last=True, normalize=False, zero_above=False)
|
|
|
|
if with_pivots:
|
|
return mat, pivots
|
|
|
|
return mat
|
|
|
|
|
|
# This functions is a candidate for caching if it gets implemented for matrices.
|
|
def _rank(M, iszerofunc=_iszero, simplify=False):
|
|
"""Returns the rank of a matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x
|
|
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
|
|
>>> m.rank()
|
|
2
|
|
>>> n = Matrix(3, 3, range(1, 10))
|
|
>>> n.rank()
|
|
2
|
|
"""
|
|
|
|
def _permute_complexity_right(M, iszerofunc):
|
|
"""Permute columns with complicated elements as
|
|
far right as they can go. Since the ``sympy`` row reduction
|
|
algorithms start on the left, having complexity right-shifted
|
|
speeds things up.
|
|
|
|
Returns a tuple (mat, perm) where perm is a permutation
|
|
of the columns to perform to shift the complex columns right, and mat
|
|
is the permuted matrix."""
|
|
|
|
def complexity(i):
|
|
# the complexity of a column will be judged by how many
|
|
# element's zero-ness cannot be determined
|
|
return sum(1 if iszerofunc(e) is None else 0 for e in M[:, i])
|
|
|
|
complex = [(complexity(i), i) for i in range(M.cols)]
|
|
perm = [j for (i, j) in sorted(complex)]
|
|
|
|
return (M.permute(perm, orientation='cols'), perm)
|
|
|
|
simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify
|
|
|
|
# for small matrices, we compute the rank explicitly
|
|
# if is_zero on elements doesn't answer the question
|
|
# for small matrices, we fall back to the full routine.
|
|
if M.rows <= 0 or M.cols <= 0:
|
|
return 0
|
|
|
|
if M.rows <= 1 or M.cols <= 1:
|
|
zeros = [iszerofunc(x) for x in M]
|
|
|
|
if False in zeros:
|
|
return 1
|
|
|
|
if M.rows == 2 and M.cols == 2:
|
|
zeros = [iszerofunc(x) for x in M]
|
|
|
|
if False not in zeros and None not in zeros:
|
|
return 0
|
|
|
|
d = M.det()
|
|
|
|
if iszerofunc(d) and False in zeros:
|
|
return 1
|
|
if iszerofunc(d) is False:
|
|
return 2
|
|
|
|
mat, _ = _permute_complexity_right(M, iszerofunc=iszerofunc)
|
|
_, pivots, _ = _row_reduce(mat, iszerofunc, simpfunc, normalize_last=True,
|
|
normalize=False, zero_above=False)
|
|
|
|
return len(pivots)
|
|
|
|
|
|
def _rref(M, iszerofunc=_iszero, simplify=False, pivots=True,
|
|
normalize_last=True):
|
|
"""Return reduced row-echelon form of matrix and indices of pivot vars.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
iszerofunc : Function
|
|
A function used for detecting whether an element can
|
|
act as a pivot. ``lambda x: x.is_zero`` is used by default.
|
|
|
|
simplify : Function
|
|
A function used to simplify elements when looking for a pivot.
|
|
By default SymPy's ``simplify`` is used.
|
|
|
|
pivots : True or False
|
|
If ``True``, a tuple containing the row-reduced matrix and a tuple
|
|
of pivot columns is returned. If ``False`` just the row-reduced
|
|
matrix is returned.
|
|
|
|
normalize_last : True or False
|
|
If ``True``, no pivots are normalized to `1` until after all
|
|
entries above and below each pivot are zeroed. This means the row
|
|
reduction algorithm is fraction free until the very last step.
|
|
If ``False``, the naive row reduction procedure is used where
|
|
each pivot is normalized to be `1` before row operations are
|
|
used to zero above and below the pivot.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x
|
|
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
|
|
>>> m.rref()
|
|
(Matrix([
|
|
[1, 0],
|
|
[0, 1]]), (0, 1))
|
|
>>> rref_matrix, rref_pivots = m.rref()
|
|
>>> rref_matrix
|
|
Matrix([
|
|
[1, 0],
|
|
[0, 1]])
|
|
>>> rref_pivots
|
|
(0, 1)
|
|
|
|
``iszerofunc`` can correct rounding errors in matrices with float
|
|
values. In the following example, calling ``rref()`` leads to
|
|
floating point errors, incorrectly row reducing the matrix.
|
|
``iszerofunc= lambda x: abs(x)<1e-9`` sets sufficiently small numbers
|
|
to zero, avoiding this error.
|
|
|
|
>>> m = Matrix([[0.9, -0.1, -0.2, 0], [-0.8, 0.9, -0.4, 0], [-0.1, -0.8, 0.6, 0]])
|
|
>>> m.rref()
|
|
(Matrix([
|
|
[1, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 0, 1, 0]]), (0, 1, 2))
|
|
>>> m.rref(iszerofunc=lambda x:abs(x)<1e-9)
|
|
(Matrix([
|
|
[1, 0, -0.301369863013699, 0],
|
|
[0, 1, -0.712328767123288, 0],
|
|
[0, 0, 0, 0]]), (0, 1))
|
|
|
|
Notes
|
|
=====
|
|
|
|
The default value of ``normalize_last=True`` can provide significant
|
|
speedup to row reduction, especially on matrices with symbols. However,
|
|
if you depend on the form row reduction algorithm leaves entries
|
|
of the matrix, set ``noramlize_last=False``
|
|
"""
|
|
|
|
simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify
|
|
|
|
mat, pivot_cols, _ = _row_reduce(M, iszerofunc, simpfunc,
|
|
normalize_last, normalize=True, zero_above=True)
|
|
|
|
if pivots:
|
|
mat = (mat, pivot_cols)
|
|
|
|
return mat
|