474 lines
14 KiB
Python
474 lines
14 KiB
Python
from collections.abc import Callable
|
|
|
|
from sympy.core.containers import Dict
|
|
from sympy.utilities.exceptions import sympy_deprecation_warning
|
|
from sympy.utilities.iterables import is_sequence
|
|
from sympy.utilities.misc import as_int
|
|
|
|
from .matrices import MatrixBase
|
|
from .repmatrix import MutableRepMatrix, RepMatrix
|
|
|
|
from .utilities import _iszero
|
|
|
|
from .decompositions import (
|
|
_liupc, _row_structure_symbolic_cholesky, _cholesky_sparse,
|
|
_LDLdecomposition_sparse)
|
|
|
|
from .solvers import (
|
|
_lower_triangular_solve_sparse, _upper_triangular_solve_sparse)
|
|
|
|
|
|
class SparseRepMatrix(RepMatrix):
|
|
"""
|
|
A sparse matrix (a matrix with a large number of zero elements).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import SparseMatrix, ones
|
|
>>> SparseMatrix(2, 2, range(4))
|
|
Matrix([
|
|
[0, 1],
|
|
[2, 3]])
|
|
>>> SparseMatrix(2, 2, {(1, 1): 2})
|
|
Matrix([
|
|
[0, 0],
|
|
[0, 2]])
|
|
|
|
A SparseMatrix can be instantiated from a ragged list of lists:
|
|
|
|
>>> SparseMatrix([[1, 2, 3], [1, 2], [1]])
|
|
Matrix([
|
|
[1, 2, 3],
|
|
[1, 2, 0],
|
|
[1, 0, 0]])
|
|
|
|
For safety, one may include the expected size and then an error
|
|
will be raised if the indices of any element are out of range or
|
|
(for a flat list) if the total number of elements does not match
|
|
the expected shape:
|
|
|
|
>>> SparseMatrix(2, 2, [1, 2])
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: List length (2) != rows*columns (4)
|
|
|
|
Here, an error is not raised because the list is not flat and no
|
|
element is out of range:
|
|
|
|
>>> SparseMatrix(2, 2, [[1, 2]])
|
|
Matrix([
|
|
[1, 2],
|
|
[0, 0]])
|
|
|
|
But adding another element to the first (and only) row will cause
|
|
an error to be raised:
|
|
|
|
>>> SparseMatrix(2, 2, [[1, 2, 3]])
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: The location (0, 2) is out of designated range: (1, 1)
|
|
|
|
To autosize the matrix, pass None for rows:
|
|
|
|
>>> SparseMatrix(None, [[1, 2, 3]])
|
|
Matrix([[1, 2, 3]])
|
|
>>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3})
|
|
Matrix([
|
|
[0, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 0, 0, 0],
|
|
[0, 0, 0, 3]])
|
|
|
|
Values that are themselves a Matrix are automatically expanded:
|
|
|
|
>>> SparseMatrix(4, 4, {(1, 1): ones(2)})
|
|
Matrix([
|
|
[0, 0, 0, 0],
|
|
[0, 1, 1, 0],
|
|
[0, 1, 1, 0],
|
|
[0, 0, 0, 0]])
|
|
|
|
A ValueError is raised if the expanding matrix tries to overwrite
|
|
a different element already present:
|
|
|
|
>>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: collision at (1, 1)
|
|
|
|
See Also
|
|
========
|
|
DenseMatrix
|
|
MutableSparseMatrix
|
|
ImmutableSparseMatrix
|
|
"""
|
|
|
|
@classmethod
|
|
def _handle_creation_inputs(cls, *args, **kwargs):
|
|
if len(args) == 1 and isinstance(args[0], MatrixBase):
|
|
rows = args[0].rows
|
|
cols = args[0].cols
|
|
smat = args[0].todok()
|
|
return rows, cols, smat
|
|
|
|
smat = {}
|
|
# autosizing
|
|
if len(args) == 2 and args[0] is None:
|
|
args = [None, None, args[1]]
|
|
|
|
if len(args) == 3:
|
|
r, c = args[:2]
|
|
if r is c is None:
|
|
rows = cols = None
|
|
elif None in (r, c):
|
|
raise ValueError(
|
|
'Pass rows=None and no cols for autosizing.')
|
|
else:
|
|
rows, cols = as_int(args[0]), as_int(args[1])
|
|
|
|
if isinstance(args[2], Callable):
|
|
op = args[2]
|
|
|
|
if None in (rows, cols):
|
|
raise ValueError(
|
|
"{} and {} must be integers for this "
|
|
"specification.".format(rows, cols))
|
|
|
|
row_indices = [cls._sympify(i) for i in range(rows)]
|
|
col_indices = [cls._sympify(j) for j in range(cols)]
|
|
|
|
for i in row_indices:
|
|
for j in col_indices:
|
|
value = cls._sympify(op(i, j))
|
|
if value != cls.zero:
|
|
smat[i, j] = value
|
|
|
|
return rows, cols, smat
|
|
|
|
elif isinstance(args[2], (dict, Dict)):
|
|
def update(i, j, v):
|
|
# update smat and make sure there are no collisions
|
|
if v:
|
|
if (i, j) in smat and v != smat[i, j]:
|
|
raise ValueError(
|
|
"There is a collision at {} for {} and {}."
|
|
.format((i, j), v, smat[i, j])
|
|
)
|
|
smat[i, j] = v
|
|
|
|
# manual copy, copy.deepcopy() doesn't work
|
|
for (r, c), v in args[2].items():
|
|
if isinstance(v, MatrixBase):
|
|
for (i, j), vv in v.todok().items():
|
|
update(r + i, c + j, vv)
|
|
elif isinstance(v, (list, tuple)):
|
|
_, _, smat = cls._handle_creation_inputs(v, **kwargs)
|
|
for i, j in smat:
|
|
update(r + i, c + j, smat[i, j])
|
|
else:
|
|
v = cls._sympify(v)
|
|
update(r, c, cls._sympify(v))
|
|
|
|
elif is_sequence(args[2]):
|
|
flat = not any(is_sequence(i) for i in args[2])
|
|
if not flat:
|
|
_, _, smat = \
|
|
cls._handle_creation_inputs(args[2], **kwargs)
|
|
else:
|
|
flat_list = args[2]
|
|
if len(flat_list) != rows * cols:
|
|
raise ValueError(
|
|
"The length of the flat list ({}) does not "
|
|
"match the specified size ({} * {})."
|
|
.format(len(flat_list), rows, cols)
|
|
)
|
|
|
|
for i in range(rows):
|
|
for j in range(cols):
|
|
value = flat_list[i*cols + j]
|
|
value = cls._sympify(value)
|
|
if value != cls.zero:
|
|
smat[i, j] = value
|
|
|
|
if rows is None: # autosizing
|
|
keys = smat.keys()
|
|
rows = max([r for r, _ in keys]) + 1 if keys else 0
|
|
cols = max([c for _, c in keys]) + 1 if keys else 0
|
|
|
|
else:
|
|
for i, j in smat.keys():
|
|
if i and i >= rows or j and j >= cols:
|
|
raise ValueError(
|
|
"The location {} is out of the designated range"
|
|
"[{}, {}]x[{}, {}]"
|
|
.format((i, j), 0, rows - 1, 0, cols - 1)
|
|
)
|
|
|
|
return rows, cols, smat
|
|
|
|
elif len(args) == 1 and isinstance(args[0], (list, tuple)):
|
|
# list of values or lists
|
|
v = args[0]
|
|
c = 0
|
|
for i, row in enumerate(v):
|
|
if not isinstance(row, (list, tuple)):
|
|
row = [row]
|
|
for j, vv in enumerate(row):
|
|
if vv != cls.zero:
|
|
smat[i, j] = cls._sympify(vv)
|
|
c = max(c, len(row))
|
|
rows = len(v) if c else 0
|
|
cols = c
|
|
return rows, cols, smat
|
|
|
|
else:
|
|
# handle full matrix forms with _handle_creation_inputs
|
|
rows, cols, mat = super()._handle_creation_inputs(*args)
|
|
for i in range(rows):
|
|
for j in range(cols):
|
|
value = mat[cols*i + j]
|
|
if value != cls.zero:
|
|
smat[i, j] = value
|
|
|
|
return rows, cols, smat
|
|
|
|
@property
|
|
def _smat(self):
|
|
|
|
sympy_deprecation_warning(
|
|
"""
|
|
The private _smat attribute of SparseMatrix is deprecated. Use the
|
|
.todok() method instead.
|
|
""",
|
|
deprecated_since_version="1.9",
|
|
active_deprecations_target="deprecated-private-matrix-attributes"
|
|
)
|
|
|
|
return self.todok()
|
|
|
|
def _eval_inverse(self, **kwargs):
|
|
return self.inv(method=kwargs.get('method', 'LDL'),
|
|
iszerofunc=kwargs.get('iszerofunc', _iszero),
|
|
try_block_diag=kwargs.get('try_block_diag', False))
|
|
|
|
def applyfunc(self, f):
|
|
"""Apply a function to each element of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import SparseMatrix
|
|
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j)
|
|
>>> m
|
|
Matrix([
|
|
[0, 1],
|
|
[2, 3]])
|
|
>>> m.applyfunc(lambda i: 2*i)
|
|
Matrix([
|
|
[0, 2],
|
|
[4, 6]])
|
|
|
|
"""
|
|
if not callable(f):
|
|
raise TypeError("`f` must be callable.")
|
|
|
|
# XXX: This only applies the function to the nonzero elements of the
|
|
# matrix so is inconsistent with DenseMatrix.applyfunc e.g.
|
|
# zeros(2, 2).applyfunc(lambda x: x + 1)
|
|
dok = {}
|
|
for k, v in self.todok().items():
|
|
fv = f(v)
|
|
if fv != 0:
|
|
dok[k] = fv
|
|
|
|
return self._new(self.rows, self.cols, dok)
|
|
|
|
def as_immutable(self):
|
|
"""Returns an Immutable version of this Matrix."""
|
|
from .immutable import ImmutableSparseMatrix
|
|
return ImmutableSparseMatrix(self)
|
|
|
|
def as_mutable(self):
|
|
"""Returns a mutable version of this matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ImmutableMatrix
|
|
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
|
|
>>> Y = X.as_mutable()
|
|
>>> Y[1, 1] = 5 # Can set values in Y
|
|
>>> Y
|
|
Matrix([
|
|
[1, 2],
|
|
[3, 5]])
|
|
"""
|
|
return MutableSparseMatrix(self)
|
|
|
|
def col_list(self):
|
|
"""Returns a column-sorted list of non-zero elements of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import SparseMatrix
|
|
>>> a=SparseMatrix(((1, 2), (3, 4)))
|
|
>>> a
|
|
Matrix([
|
|
[1, 2],
|
|
[3, 4]])
|
|
>>> a.CL
|
|
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.matrices.sparse.SparseMatrix.row_list
|
|
"""
|
|
return [tuple(k + (self[k],)) for k in sorted(self.todok().keys(), key=lambda k: list(reversed(k)))]
|
|
|
|
def nnz(self):
|
|
"""Returns the number of non-zero elements in Matrix."""
|
|
return len(self.todok())
|
|
|
|
def row_list(self):
|
|
"""Returns a row-sorted list of non-zero elements of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import SparseMatrix
|
|
>>> a = SparseMatrix(((1, 2), (3, 4)))
|
|
>>> a
|
|
Matrix([
|
|
[1, 2],
|
|
[3, 4]])
|
|
>>> a.RL
|
|
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.matrices.sparse.SparseMatrix.col_list
|
|
"""
|
|
return [tuple(k + (self[k],)) for k in
|
|
sorted(self.todok().keys(), key=list)]
|
|
|
|
def scalar_multiply(self, scalar):
|
|
"Scalar element-wise multiplication"
|
|
return scalar * self
|
|
|
|
def solve_least_squares(self, rhs, method='LDL'):
|
|
"""Return the least-square fit to the data.
|
|
|
|
By default the cholesky_solve routine is used (method='CH'); other
|
|
methods of matrix inversion can be used. To find out which are
|
|
available, see the docstring of the .inv() method.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import SparseMatrix, Matrix, ones
|
|
>>> A = Matrix([1, 2, 3])
|
|
>>> B = Matrix([2, 3, 4])
|
|
>>> S = SparseMatrix(A.row_join(B))
|
|
>>> S
|
|
Matrix([
|
|
[1, 2],
|
|
[2, 3],
|
|
[3, 4]])
|
|
|
|
If each line of S represent coefficients of Ax + By
|
|
and x and y are [2, 3] then S*xy is:
|
|
|
|
>>> r = S*Matrix([2, 3]); r
|
|
Matrix([
|
|
[ 8],
|
|
[13],
|
|
[18]])
|
|
|
|
But let's add 1 to the middle value and then solve for the
|
|
least-squares value of xy:
|
|
|
|
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
|
|
Matrix([
|
|
[ 5/3],
|
|
[10/3]])
|
|
|
|
The error is given by S*xy - r:
|
|
|
|
>>> S*xy - r
|
|
Matrix([
|
|
[1/3],
|
|
[1/3],
|
|
[1/3]])
|
|
>>> _.norm().n(2)
|
|
0.58
|
|
|
|
If a different xy is used, the norm will be higher:
|
|
|
|
>>> xy += ones(2, 1)/10
|
|
>>> (S*xy - r).norm().n(2)
|
|
1.5
|
|
|
|
"""
|
|
t = self.T
|
|
return (t*self).inv(method=method)*t*rhs
|
|
|
|
def solve(self, rhs, method='LDL'):
|
|
"""Return solution to self*soln = rhs using given inversion method.
|
|
|
|
For a list of possible inversion methods, see the .inv() docstring.
|
|
"""
|
|
if not self.is_square:
|
|
if self.rows < self.cols:
|
|
raise ValueError('Under-determined system.')
|
|
elif self.rows > self.cols:
|
|
raise ValueError('For over-determined system, M, having '
|
|
'more rows than columns, try M.solve_least_squares(rhs).')
|
|
else:
|
|
return self.inv(method=method).multiply(rhs)
|
|
|
|
RL = property(row_list, None, None, "Alternate faster representation")
|
|
CL = property(col_list, None, None, "Alternate faster representation")
|
|
|
|
def liupc(self):
|
|
return _liupc(self)
|
|
|
|
def row_structure_symbolic_cholesky(self):
|
|
return _row_structure_symbolic_cholesky(self)
|
|
|
|
def cholesky(self, hermitian=True):
|
|
return _cholesky_sparse(self, hermitian=hermitian)
|
|
|
|
def LDLdecomposition(self, hermitian=True):
|
|
return _LDLdecomposition_sparse(self, hermitian=hermitian)
|
|
|
|
def lower_triangular_solve(self, rhs):
|
|
return _lower_triangular_solve_sparse(self, rhs)
|
|
|
|
def upper_triangular_solve(self, rhs):
|
|
return _upper_triangular_solve_sparse(self, rhs)
|
|
|
|
liupc.__doc__ = _liupc.__doc__
|
|
row_structure_symbolic_cholesky.__doc__ = _row_structure_symbolic_cholesky.__doc__
|
|
cholesky.__doc__ = _cholesky_sparse.__doc__
|
|
LDLdecomposition.__doc__ = _LDLdecomposition_sparse.__doc__
|
|
lower_triangular_solve.__doc__ = lower_triangular_solve.__doc__
|
|
upper_triangular_solve.__doc__ = upper_triangular_solve.__doc__
|
|
|
|
|
|
class MutableSparseMatrix(SparseRepMatrix, MutableRepMatrix):
|
|
|
|
@classmethod
|
|
def _new(cls, *args, **kwargs):
|
|
rows, cols, smat = cls._handle_creation_inputs(*args, **kwargs)
|
|
|
|
rep = cls._smat_to_DomainMatrix(rows, cols, smat)
|
|
|
|
return cls._fromrep(rep)
|
|
|
|
|
|
SparseMatrix = MutableSparseMatrix
|