94 lines
3.7 KiB
Python
94 lines
3.7 KiB
Python
import json
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Optional, Tuple, Union
|
|
|
|
import PIL.Image
|
|
|
|
from .utils import download_and_extract_archive, verify_str_arg
|
|
from .vision import VisionDataset
|
|
|
|
|
|
class Food101(VisionDataset):
|
|
"""`The Food-101 Data Set <https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/>`_.
|
|
|
|
The Food-101 is a challenging data set of 101 food categories with 101,000 images.
|
|
For each class, 250 manually reviewed test images are provided as well as 750 training images.
|
|
On purpose, the training images were not cleaned, and thus still contain some amount of noise.
|
|
This comes mostly in the form of intense colors and sometimes wrong labels. All images were
|
|
rescaled to have a maximum side length of 512 pixels.
|
|
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of the dataset.
|
|
split (string, optional): The dataset split, supports ``"train"`` (default) and ``"test"``.
|
|
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
|
|
version. E.g, ``transforms.RandomCrop``.
|
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
|
|
download (bool, optional): If True, downloads the dataset from the internet and
|
|
puts it in root directory. If dataset is already downloaded, it is not
|
|
downloaded again. Default is False.
|
|
"""
|
|
|
|
_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"
|
|
_MD5 = "85eeb15f3717b99a5da872d97d918f87"
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
split: str = "train",
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
download: bool = False,
|
|
) -> None:
|
|
super().__init__(root, transform=transform, target_transform=target_transform)
|
|
self._split = verify_str_arg(split, "split", ("train", "test"))
|
|
self._base_folder = Path(self.root) / "food-101"
|
|
self._meta_folder = self._base_folder / "meta"
|
|
self._images_folder = self._base_folder / "images"
|
|
|
|
if download:
|
|
self._download()
|
|
|
|
if not self._check_exists():
|
|
raise RuntimeError("Dataset not found. You can use download=True to download it")
|
|
|
|
self._labels = []
|
|
self._image_files = []
|
|
with open(self._meta_folder / f"{split}.json") as f:
|
|
metadata = json.loads(f.read())
|
|
|
|
self.classes = sorted(metadata.keys())
|
|
self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
|
|
|
|
for class_label, im_rel_paths in metadata.items():
|
|
self._labels += [self.class_to_idx[class_label]] * len(im_rel_paths)
|
|
self._image_files += [
|
|
self._images_folder.joinpath(*f"{im_rel_path}.jpg".split("/")) for im_rel_path in im_rel_paths
|
|
]
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._image_files)
|
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
|
|
image_file, label = self._image_files[idx], self._labels[idx]
|
|
image = PIL.Image.open(image_file).convert("RGB")
|
|
|
|
if self.transform:
|
|
image = self.transform(image)
|
|
|
|
if self.target_transform:
|
|
label = self.target_transform(label)
|
|
|
|
return image, label
|
|
|
|
def extra_repr(self) -> str:
|
|
return f"split={self._split}"
|
|
|
|
def _check_exists(self) -> bool:
|
|
return all(folder.exists() and folder.is_dir() for folder in (self._meta_folder, self._images_folder))
|
|
|
|
def _download(self) -> None:
|
|
if self._check_exists():
|
|
return
|
|
download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
|