74 lines
1.8 KiB
Python
74 lines
1.8 KiB
Python
#from mpmath.calculus import ODE_step_euler, ODE_step_rk4, odeint, arange
|
|
from mpmath import odefun, cos, sin, mpf, sinc, mp
|
|
|
|
'''
|
|
solvers = [ODE_step_euler, ODE_step_rk4]
|
|
|
|
def test_ode1():
|
|
"""
|
|
Let's solve:
|
|
|
|
x'' + w**2 * x = 0
|
|
|
|
i.e. x1 = x, x2 = x1':
|
|
|
|
x1' = x2
|
|
x2' = -x1
|
|
"""
|
|
def derivs((x1, x2), t):
|
|
return x2, -x1
|
|
|
|
for solver in solvers:
|
|
t = arange(0, 3.1415926, 0.005)
|
|
sol = odeint(derivs, (0., 1.), t, solver)
|
|
x1 = [a[0] for a in sol]
|
|
x2 = [a[1] for a in sol]
|
|
# the result is x1 = sin(t), x2 = cos(t)
|
|
# let's just check the end points for t = pi
|
|
assert abs(x1[-1]) < 1e-2
|
|
assert abs(x2[-1] - (-1)) < 1e-2
|
|
|
|
def test_ode2():
|
|
"""
|
|
Let's solve:
|
|
|
|
x' - x = 0
|
|
|
|
i.e. x = exp(x)
|
|
|
|
"""
|
|
def derivs((x), t):
|
|
return x
|
|
|
|
for solver in solvers:
|
|
t = arange(0, 1, 1e-3)
|
|
sol = odeint(derivs, (1.,), t, solver)
|
|
x = [a[0] for a in sol]
|
|
# the result is x = exp(t)
|
|
# let's just check the end point for t = 1, i.e. x = e
|
|
assert abs(x[-1] - 2.718281828) < 1e-2
|
|
'''
|
|
|
|
def test_odefun_rational():
|
|
mp.dps = 15
|
|
# A rational function
|
|
f = lambda t: 1/(1+mpf(t)**2)
|
|
g = odefun(lambda x, y: [-2*x*y[0]**2], 0, [f(0)])
|
|
assert f(2).ae(g(2)[0])
|
|
|
|
def test_odefun_sinc_large():
|
|
mp.dps = 15
|
|
# Sinc function; test for large x
|
|
f = sinc
|
|
g = odefun(lambda x, y: [(cos(x)-y[0])/x], 1, [f(1)], tol=0.01, degree=5)
|
|
assert abs(f(100) - g(100)[0])/f(100) < 0.01
|
|
|
|
def test_odefun_harmonic():
|
|
mp.dps = 15
|
|
# Harmonic oscillator
|
|
f = odefun(lambda x, y: [-y[1], y[0]], 0, [1, 0])
|
|
for x in [0, 1, 2.5, 8, 3.7]: # we go back to 3.7 to check caching
|
|
c, s = f(x)
|
|
assert c.ae(cos(x))
|
|
assert s.ae(sin(x))
|