119 lines
3.4 KiB
Python
119 lines
3.4 KiB
Python
from .matexpr import MatrixExpr
|
|
from sympy.core.function import FunctionClass, Lambda
|
|
from sympy.core.symbol import Dummy
|
|
from sympy.core.sympify import _sympify, sympify
|
|
from sympy.matrices import Matrix
|
|
from sympy.functions.elementary.complexes import re, im
|
|
|
|
|
|
class FunctionMatrix(MatrixExpr):
|
|
"""Represents a matrix using a function (``Lambda``) which gives
|
|
outputs according to the coordinates of each matrix entries.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
rows : nonnegative integer. Can be symbolic.
|
|
|
|
cols : nonnegative integer. Can be symbolic.
|
|
|
|
lamda : Function, Lambda or str
|
|
If it is a SymPy ``Function`` or ``Lambda`` instance,
|
|
it should be able to accept two arguments which represents the
|
|
matrix coordinates.
|
|
|
|
If it is a pure string containing Python ``lambda`` semantics,
|
|
it is interpreted by the SymPy parser and casted into a SymPy
|
|
``Lambda`` instance.
|
|
|
|
Examples
|
|
========
|
|
|
|
Creating a ``FunctionMatrix`` from ``Lambda``:
|
|
|
|
>>> from sympy import FunctionMatrix, symbols, Lambda, MatPow
|
|
>>> i, j, n, m = symbols('i,j,n,m')
|
|
>>> FunctionMatrix(n, m, Lambda((i, j), i + j))
|
|
FunctionMatrix(n, m, Lambda((i, j), i + j))
|
|
|
|
Creating a ``FunctionMatrix`` from a SymPy function:
|
|
|
|
>>> from sympy import KroneckerDelta
|
|
>>> X = FunctionMatrix(3, 3, KroneckerDelta)
|
|
>>> X.as_explicit()
|
|
Matrix([
|
|
[1, 0, 0],
|
|
[0, 1, 0],
|
|
[0, 0, 1]])
|
|
|
|
Creating a ``FunctionMatrix`` from a SymPy undefined function:
|
|
|
|
>>> from sympy import Function
|
|
>>> f = Function('f')
|
|
>>> X = FunctionMatrix(3, 3, f)
|
|
>>> X.as_explicit()
|
|
Matrix([
|
|
[f(0, 0), f(0, 1), f(0, 2)],
|
|
[f(1, 0), f(1, 1), f(1, 2)],
|
|
[f(2, 0), f(2, 1), f(2, 2)]])
|
|
|
|
Creating a ``FunctionMatrix`` from Python ``lambda``:
|
|
|
|
>>> FunctionMatrix(n, m, 'lambda i, j: i + j')
|
|
FunctionMatrix(n, m, Lambda((i, j), i + j))
|
|
|
|
Example of lazy evaluation of matrix product:
|
|
|
|
>>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
|
|
>>> isinstance(Y*Y, MatPow) # this is an expression object
|
|
True
|
|
>>> (Y**2)[10,10] # So this is evaluated lazily
|
|
342923500
|
|
|
|
Notes
|
|
=====
|
|
|
|
This class provides an alternative way to represent an extremely
|
|
dense matrix with entries in some form of a sequence, in a most
|
|
sparse way.
|
|
"""
|
|
def __new__(cls, rows, cols, lamda):
|
|
rows, cols = _sympify(rows), _sympify(cols)
|
|
cls._check_dim(rows)
|
|
cls._check_dim(cols)
|
|
|
|
lamda = sympify(lamda)
|
|
if not isinstance(lamda, (FunctionClass, Lambda)):
|
|
raise ValueError(
|
|
"{} should be compatible with SymPy function classes."
|
|
.format(lamda))
|
|
|
|
if 2 not in lamda.nargs:
|
|
raise ValueError(
|
|
'{} should be able to accept 2 arguments.'.format(lamda))
|
|
|
|
if not isinstance(lamda, Lambda):
|
|
i, j = Dummy('i'), Dummy('j')
|
|
lamda = Lambda((i, j), lamda(i, j))
|
|
|
|
return super().__new__(cls, rows, cols, lamda)
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.args[0:2]
|
|
|
|
@property
|
|
def lamda(self):
|
|
return self.args[2]
|
|
|
|
def _entry(self, i, j, **kwargs):
|
|
return self.lamda(i, j)
|
|
|
|
def _eval_trace(self):
|
|
from sympy.matrices.expressions.trace import Trace
|
|
from sympy.concrete.summations import Sum
|
|
return Trace(self).rewrite(Sum).doit()
|
|
|
|
def _eval_as_real_imag(self):
|
|
return (re(Matrix(self)), im(Matrix(self)))
|