Traktor/myenv/Lib/site-packages/torchaudio/kaldi_io.py
2024-05-26 05:12:46 +02:00

145 lines
5.0 KiB
Python

# To use this file, the dependency (https://github.com/vesis84/kaldi-io-for-python)
# needs to be installed. This is a light wrapper around kaldi_io that returns
# torch.Tensors.
from typing import Any, Callable, Iterable, Tuple
import torch
from torch import Tensor
from torchaudio._internal import module_utils as _mod_utils
if _mod_utils.is_module_available("numpy"):
import numpy as np
__all__ = [
"read_vec_int_ark",
"read_vec_flt_scp",
"read_vec_flt_ark",
"read_mat_scp",
"read_mat_ark",
]
def _convert_method_output_to_tensor(
file_or_fd: Any, fn: Callable, convert_contiguous: bool = False
) -> Iterable[Tuple[str, Tensor]]:
r"""Takes a method invokes it. The output is converted to a tensor.
Args:
file_or_fd (str/FileDescriptor): File name or file descriptor
fn (Callable): Function that has the signature (file name/descriptor) and converts it to
Iterable[Tuple[str, Tensor]].
convert_contiguous (bool, optional): Determines whether the array should be converted into a
contiguous layout. (Default: ``False``)
Returns:
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is vec/mat
"""
for key, np_arr in fn(file_or_fd):
if convert_contiguous:
np_arr = np.ascontiguousarray(np_arr)
yield key, torch.from_numpy(np_arr)
@_mod_utils.requires_module("kaldi_io", "numpy")
def read_vec_int_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
r"""Create generator of (key,vector<int>) tuples, which reads from the ark file/stream.
Args:
file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor
Returns:
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file
Example
>>> # read ark to a 'dictionary'
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_int_ark(file) }
"""
import kaldi_io
# Requires convert_contiguous to be True because elements from int32 vector are
# sorted in tuples: (sizeof(int32), value) so strides are (5,) instead of (4,) which will throw an error
# in from_numpy as it expects strides to be a multiple of 4 (int32).
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_int_ark, convert_contiguous=True)
@_mod_utils.requires_module("kaldi_io", "numpy")
def read_vec_flt_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
r"""Create generator of (key,vector<float32/float64>) tuples, read according to Kaldi scp.
Args:
file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor
Returns:
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file
Example
>>> # read scp to a 'dictionary'
>>> # d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_scp(file) }
"""
import kaldi_io
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_scp)
@_mod_utils.requires_module("kaldi_io", "numpy")
def read_vec_flt_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
r"""Create generator of (key,vector<float32/float64>) tuples, which reads from the ark file/stream.
Args:
file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor
Returns:
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file
Example
>>> # read ark to a 'dictionary'
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_ark(file) }
"""
import kaldi_io
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_ark)
@_mod_utils.requires_module("kaldi_io", "numpy")
def read_mat_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
r"""Create generator of (key,matrix<float32/float64>) tuples, read according to Kaldi scp.
Args:
file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor
Returns:
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file
Example
>>> # read scp to a 'dictionary'
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_scp(file) }
"""
import kaldi_io
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_scp)
@_mod_utils.requires_module("kaldi_io", "numpy")
def read_mat_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
r"""Create generator of (key,matrix<float32/float64>) tuples, which reads from the ark file/stream.
Args:
file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor
Returns:
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file
Example
>>> # read ark to a 'dictionary'
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_ark(file) }
"""
import kaldi_io
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_ark)