Traktor/myenv/Lib/site-packages/torchvision/_meta_registrations.py
2024-05-26 05:12:46 +02:00

226 lines
7.0 KiB
Python

import functools
import torch
import torch._custom_ops
import torch.library
# Ensure that torch.ops.torchvision is visible
import torchvision.extension # noqa: F401
@functools.lru_cache(None)
def get_meta_lib():
return torch.library.Library("torchvision", "IMPL", "Meta")
def register_meta(op_name, overload_name="default"):
def wrapper(fn):
if torchvision.extension._has_ops():
get_meta_lib().impl(getattr(getattr(torch.ops.torchvision, op_name), overload_name), fn)
return fn
return wrapper
@register_meta("roi_align")
def meta_roi_align(input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned):
torch._check(rois.size(1) == 5, lambda: "rois must have shape as Tensor[K, 5]")
torch._check(
input.dtype == rois.dtype,
lambda: (
"Expected tensor for input to have the same type as tensor for rois; "
f"but type {input.dtype} does not equal {rois.dtype}"
),
)
num_rois = rois.size(0)
channels = input.size(1)
return input.new_empty((num_rois, channels, pooled_height, pooled_width))
@register_meta("_roi_align_backward")
def meta_roi_align_backward(
grad, rois, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width, sampling_ratio, aligned
):
torch._check(
grad.dtype == rois.dtype,
lambda: (
"Expected tensor for grad to have the same type as tensor for rois; "
f"but type {grad.dtype} does not equal {rois.dtype}"
),
)
return grad.new_empty((batch_size, channels, height, width))
@register_meta("ps_roi_align")
def meta_ps_roi_align(input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio):
torch._check(rois.size(1) == 5, lambda: "rois must have shape as Tensor[K, 5]")
torch._check(
input.dtype == rois.dtype,
lambda: (
"Expected tensor for input to have the same type as tensor for rois; "
f"but type {input.dtype} does not equal {rois.dtype}"
),
)
channels = input.size(1)
torch._check(
channels % (pooled_height * pooled_width) == 0,
"input channels must be a multiple of pooling height * pooling width",
)
num_rois = rois.size(0)
out_size = (num_rois, channels // (pooled_height * pooled_width), pooled_height, pooled_width)
return input.new_empty(out_size), torch.empty(out_size, dtype=torch.int32, device="meta")
@register_meta("_ps_roi_align_backward")
def meta_ps_roi_align_backward(
grad,
rois,
channel_mapping,
spatial_scale,
pooled_height,
pooled_width,
sampling_ratio,
batch_size,
channels,
height,
width,
):
torch._check(
grad.dtype == rois.dtype,
lambda: (
"Expected tensor for grad to have the same type as tensor for rois; "
f"but type {grad.dtype} does not equal {rois.dtype}"
),
)
return grad.new_empty((batch_size, channels, height, width))
@register_meta("roi_pool")
def meta_roi_pool(input, rois, spatial_scale, pooled_height, pooled_width):
torch._check(rois.size(1) == 5, lambda: "rois must have shape as Tensor[K, 5]")
torch._check(
input.dtype == rois.dtype,
lambda: (
"Expected tensor for input to have the same type as tensor for rois; "
f"but type {input.dtype} does not equal {rois.dtype}"
),
)
num_rois = rois.size(0)
channels = input.size(1)
out_size = (num_rois, channels, pooled_height, pooled_width)
return input.new_empty(out_size), torch.empty(out_size, device="meta", dtype=torch.int32)
@register_meta("_roi_pool_backward")
def meta_roi_pool_backward(
grad, rois, argmax, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width
):
torch._check(
grad.dtype == rois.dtype,
lambda: (
"Expected tensor for grad to have the same type as tensor for rois; "
f"but type {grad.dtype} does not equal {rois.dtype}"
),
)
return grad.new_empty((batch_size, channels, height, width))
@register_meta("ps_roi_pool")
def meta_ps_roi_pool(input, rois, spatial_scale, pooled_height, pooled_width):
torch._check(rois.size(1) == 5, lambda: "rois must have shape as Tensor[K, 5]")
torch._check(
input.dtype == rois.dtype,
lambda: (
"Expected tensor for input to have the same type as tensor for rois; "
f"but type {input.dtype} does not equal {rois.dtype}"
),
)
channels = input.size(1)
torch._check(
channels % (pooled_height * pooled_width) == 0,
"input channels must be a multiple of pooling height * pooling width",
)
num_rois = rois.size(0)
out_size = (num_rois, channels // (pooled_height * pooled_width), pooled_height, pooled_width)
return input.new_empty(out_size), torch.empty(out_size, device="meta", dtype=torch.int32)
@register_meta("_ps_roi_pool_backward")
def meta_ps_roi_pool_backward(
grad, rois, channel_mapping, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width
):
torch._check(
grad.dtype == rois.dtype,
lambda: (
"Expected tensor for grad to have the same type as tensor for rois; "
f"but type {grad.dtype} does not equal {rois.dtype}"
),
)
return grad.new_empty((batch_size, channels, height, width))
@torch._custom_ops.impl_abstract("torchvision::nms")
def meta_nms(dets, scores, iou_threshold):
torch._check(dets.dim() == 2, lambda: f"boxes should be a 2d tensor, got {dets.dim()}D")
torch._check(dets.size(1) == 4, lambda: f"boxes should have 4 elements in dimension 1, got {dets.size(1)}")
torch._check(scores.dim() == 1, lambda: f"scores should be a 1d tensor, got {scores.dim()}")
torch._check(
dets.size(0) == scores.size(0),
lambda: f"boxes and scores should have same number of elements in dimension 0, got {dets.size(0)} and {scores.size(0)}",
)
ctx = torch._custom_ops.get_ctx()
num_to_keep = ctx.create_unbacked_symint()
return dets.new_empty(num_to_keep, dtype=torch.long)
@register_meta("deform_conv2d")
def meta_deform_conv2d(
input,
weight,
offset,
mask,
bias,
stride_h,
stride_w,
pad_h,
pad_w,
dil_h,
dil_w,
n_weight_grps,
n_offset_grps,
use_mask,
):
out_height, out_width = offset.shape[-2:]
out_channels = weight.shape[0]
batch_size = input.shape[0]
return input.new_empty((batch_size, out_channels, out_height, out_width))
@register_meta("_deform_conv2d_backward")
def meta_deform_conv2d_backward(
grad,
input,
weight,
offset,
mask,
bias,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w,
groups,
offset_groups,
use_mask,
):
grad_input = input.new_empty(input.shape)
grad_weight = weight.new_empty(weight.shape)
grad_offset = offset.new_empty(offset.shape)
grad_mask = mask.new_empty(mask.shape)
grad_bias = bias.new_empty(bias.shape)
return grad_input, grad_weight, grad_offset, grad_mask, grad_bias