Traktor/myenv/Lib/site-packages/torchvision/datasets/stl10.py
2024-05-26 05:12:46 +02:00

176 lines
7.1 KiB
Python

import os.path
from pathlib import Path
from typing import Any, Callable, cast, Optional, Tuple, Union
import numpy as np
from PIL import Image
from .utils import check_integrity, download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
class STL10(VisionDataset):
"""`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where directory
``stl10_binary`` exists.
split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
Accordingly, dataset is selected.
folds (int, optional): One of {0-9} or None.
For training, loads one of the 10 pre-defined folds of 1k samples for the
standard evaluation procedure. If no value is passed, loads the 5k samples.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
base_folder = "stl10_binary"
url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
filename = "stl10_binary.tar.gz"
tgz_md5 = "91f7769df0f17e558f3565bffb0c7dfb"
class_names_file = "class_names.txt"
folds_list_file = "fold_indices.txt"
train_list = [
["train_X.bin", "918c2871b30a85fa023e0c44e0bee87f"],
["train_y.bin", "5a34089d4802c674881badbb80307741"],
["unlabeled_X.bin", "5242ba1fed5e4be9e1e742405eb56ca4"],
]
test_list = [["test_X.bin", "7f263ba9f9e0b06b93213547f721ac82"], ["test_y.bin", "36f9794fa4beb8a2c72628de14fa638e"]]
splits = ("train", "train+unlabeled", "unlabeled", "test")
def __init__(
self,
root: Union[str, Path],
split: str = "train",
folds: Optional[int] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
super().__init__(root, transform=transform, target_transform=target_transform)
self.split = verify_str_arg(split, "split", self.splits)
self.folds = self._verify_folds(folds)
if download:
self.download()
elif not self._check_integrity():
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
# now load the picked numpy arrays
self.labels: Optional[np.ndarray]
if self.split == "train":
self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
self.labels = cast(np.ndarray, self.labels)
self.__load_folds(folds)
elif self.split == "train+unlabeled":
self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
self.labels = cast(np.ndarray, self.labels)
self.__load_folds(folds)
unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
self.data = np.concatenate((self.data, unlabeled_data))
self.labels = np.concatenate((self.labels, np.asarray([-1] * unlabeled_data.shape[0])))
elif self.split == "unlabeled":
self.data, _ = self.__loadfile(self.train_list[2][0])
self.labels = np.asarray([-1] * self.data.shape[0])
else: # self.split == 'test':
self.data, self.labels = self.__loadfile(self.test_list[0][0], self.test_list[1][0])
class_file = os.path.join(self.root, self.base_folder, self.class_names_file)
if os.path.isfile(class_file):
with open(class_file) as f:
self.classes = f.read().splitlines()
def _verify_folds(self, folds: Optional[int]) -> Optional[int]:
if folds is None:
return folds
elif isinstance(folds, int):
if folds in range(10):
return folds
msg = "Value for argument folds should be in the range [0, 10), but got {}."
raise ValueError(msg.format(folds))
else:
msg = "Expected type None or int for argument folds, but got type {}."
raise ValueError(msg.format(type(folds)))
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
target: Optional[int]
if self.labels is not None:
img, target = self.data[index], int(self.labels[index])
else:
img, target = self.data[index], None
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(np.transpose(img, (1, 2, 0)))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return self.data.shape[0]
def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]:
labels = None
if labels_file:
path_to_labels = os.path.join(self.root, self.base_folder, labels_file)
with open(path_to_labels, "rb") as f:
labels = np.fromfile(f, dtype=np.uint8) - 1 # 0-based
path_to_data = os.path.join(self.root, self.base_folder, data_file)
with open(path_to_data, "rb") as f:
# read whole file in uint8 chunks
everything = np.fromfile(f, dtype=np.uint8)
images = np.reshape(everything, (-1, 3, 96, 96))
images = np.transpose(images, (0, 1, 3, 2))
return images, labels
def _check_integrity(self) -> bool:
for filename, md5 in self.train_list + self.test_list:
fpath = os.path.join(self.root, self.base_folder, filename)
if not check_integrity(fpath, md5):
return False
return True
def download(self) -> None:
if self._check_integrity():
print("Files already downloaded and verified")
return
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
self._check_integrity()
def extra_repr(self) -> str:
return "Split: {split}".format(**self.__dict__)
def __load_folds(self, folds: Optional[int]) -> None:
# loads one of the folds if specified
if folds is None:
return
path_to_folds = os.path.join(self.root, self.base_folder, self.folds_list_file)
with open(path_to_folds) as f:
str_idx = f.read().splitlines()[folds]
list_idx = np.fromstring(str_idx, dtype=np.int64, sep=" ")
self.data = self.data[list_idx, :, :, :]
if self.labels is not None:
self.labels = self.labels[list_idx]