Traktor/myenv/Lib/site-packages/torchvision/datasets/video_utils.py
2024-05-26 05:12:46 +02:00

420 lines
17 KiB
Python

import bisect
import math
import warnings
from fractions import Fraction
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, TypeVar, Union
import torch
from torchvision.io import _probe_video_from_file, _read_video_from_file, read_video, read_video_timestamps
from .utils import tqdm
T = TypeVar("T")
def pts_convert(pts: int, timebase_from: Fraction, timebase_to: Fraction, round_func: Callable = math.floor) -> int:
"""convert pts between different time bases
Args:
pts: presentation timestamp, float
timebase_from: original timebase. Fraction
timebase_to: new timebase. Fraction
round_func: rounding function.
"""
new_pts = Fraction(pts, 1) * timebase_from / timebase_to
return round_func(new_pts)
def unfold(tensor: torch.Tensor, size: int, step: int, dilation: int = 1) -> torch.Tensor:
"""
similar to tensor.unfold, but with the dilation
and specialized for 1d tensors
Returns all consecutive windows of `size` elements, with
`step` between windows. The distance between each element
in a window is given by `dilation`.
"""
if tensor.dim() != 1:
raise ValueError(f"tensor should have 1 dimension instead of {tensor.dim()}")
o_stride = tensor.stride(0)
numel = tensor.numel()
new_stride = (step * o_stride, dilation * o_stride)
new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
if new_size[0] < 1:
new_size = (0, size)
return torch.as_strided(tensor, new_size, new_stride)
class _VideoTimestampsDataset:
"""
Dataset used to parallelize the reading of the timestamps
of a list of videos, given their paths in the filesystem.
Used in VideoClips and defined at top level, so it can be
pickled when forking.
"""
def __init__(self, video_paths: List[str]) -> None:
self.video_paths = video_paths
def __len__(self) -> int:
return len(self.video_paths)
def __getitem__(self, idx: int) -> Tuple[List[int], Optional[float]]:
return read_video_timestamps(self.video_paths[idx])
def _collate_fn(x: T) -> T:
"""
Dummy collate function to be used with _VideoTimestampsDataset
"""
return x
class VideoClips:
"""
Given a list of video files, computes all consecutive subvideos of size
`clip_length_in_frames`, where the distance between each subvideo in the
same video is defined by `frames_between_clips`.
If `frame_rate` is specified, it will also resample all the videos to have
the same frame rate, and the clips will refer to this frame rate.
Creating this instance the first time is time-consuming, as it needs to
decode all the videos in `video_paths`. It is recommended that you
cache the results after instantiation of the class.
Recreating the clips for different clip lengths is fast, and can be done
with the `compute_clips` method.
Args:
video_paths (List[str]): paths to the video files
clip_length_in_frames (int): size of a clip in number of frames
frames_between_clips (int): step (in frames) between each clip
frame_rate (float, optional): if specified, it will resample the video
so that it has `frame_rate`, and then the clips will be defined
on the resampled video
num_workers (int): how many subprocesses to use for data loading.
0 means that the data will be loaded in the main process. (default: 0)
output_format (str): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
"""
def __init__(
self,
video_paths: List[str],
clip_length_in_frames: int = 16,
frames_between_clips: int = 1,
frame_rate: Optional[float] = None,
_precomputed_metadata: Optional[Dict[str, Any]] = None,
num_workers: int = 0,
_video_width: int = 0,
_video_height: int = 0,
_video_min_dimension: int = 0,
_video_max_dimension: int = 0,
_audio_samples: int = 0,
_audio_channels: int = 0,
output_format: str = "THWC",
) -> None:
self.video_paths = video_paths
self.num_workers = num_workers
# these options are not valid for pyav backend
self._video_width = _video_width
self._video_height = _video_height
self._video_min_dimension = _video_min_dimension
self._video_max_dimension = _video_max_dimension
self._audio_samples = _audio_samples
self._audio_channels = _audio_channels
self.output_format = output_format.upper()
if self.output_format not in ("THWC", "TCHW"):
raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")
if _precomputed_metadata is None:
self._compute_frame_pts()
else:
self._init_from_metadata(_precomputed_metadata)
self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)
def _compute_frame_pts(self) -> None:
self.video_pts = [] # len = num_videos. Each entry is a tensor of shape (num_frames_in_video,)
self.video_fps: List[float] = [] # len = num_videos
# strategy: use a DataLoader to parallelize read_video_timestamps
# so need to create a dummy dataset first
import torch.utils.data
dl: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
_VideoTimestampsDataset(self.video_paths), # type: ignore[arg-type]
batch_size=16,
num_workers=self.num_workers,
collate_fn=_collate_fn,
)
with tqdm(total=len(dl)) as pbar:
for batch in dl:
pbar.update(1)
batch_pts, batch_fps = list(zip(*batch))
# we need to specify dtype=torch.long because for empty list,
# torch.as_tensor will use torch.float as default dtype. This
# happens when decoding fails and no pts is returned in the list.
batch_pts = [torch.as_tensor(pts, dtype=torch.long) for pts in batch_pts]
self.video_pts.extend(batch_pts)
self.video_fps.extend(batch_fps)
def _init_from_metadata(self, metadata: Dict[str, Any]) -> None:
self.video_paths = metadata["video_paths"]
assert len(self.video_paths) == len(metadata["video_pts"])
self.video_pts = metadata["video_pts"]
assert len(self.video_paths) == len(metadata["video_fps"])
self.video_fps = metadata["video_fps"]
@property
def metadata(self) -> Dict[str, Any]:
_metadata = {
"video_paths": self.video_paths,
"video_pts": self.video_pts,
"video_fps": self.video_fps,
}
return _metadata
def subset(self, indices: List[int]) -> "VideoClips":
video_paths = [self.video_paths[i] for i in indices]
video_pts = [self.video_pts[i] for i in indices]
video_fps = [self.video_fps[i] for i in indices]
metadata = {
"video_paths": video_paths,
"video_pts": video_pts,
"video_fps": video_fps,
}
return type(self)(
video_paths,
clip_length_in_frames=self.num_frames,
frames_between_clips=self.step,
frame_rate=self.frame_rate,
_precomputed_metadata=metadata,
num_workers=self.num_workers,
_video_width=self._video_width,
_video_height=self._video_height,
_video_min_dimension=self._video_min_dimension,
_video_max_dimension=self._video_max_dimension,
_audio_samples=self._audio_samples,
_audio_channels=self._audio_channels,
output_format=self.output_format,
)
@staticmethod
def compute_clips_for_video(
video_pts: torch.Tensor, num_frames: int, step: int, fps: Optional[float], frame_rate: Optional[float] = None
) -> Tuple[torch.Tensor, Union[List[slice], torch.Tensor]]:
if fps is None:
# if for some reason the video doesn't have fps (because doesn't have a video stream)
# set the fps to 1. The value doesn't matter, because video_pts is empty anyway
fps = 1
if frame_rate is None:
frame_rate = fps
total_frames = len(video_pts) * frame_rate / fps
_idxs = VideoClips._resample_video_idx(int(math.floor(total_frames)), fps, frame_rate)
video_pts = video_pts[_idxs]
clips = unfold(video_pts, num_frames, step)
if not clips.numel():
warnings.warn(
"There aren't enough frames in the current video to get a clip for the given clip length and "
"frames between clips. The video (and potentially others) will be skipped."
)
idxs: Union[List[slice], torch.Tensor]
if isinstance(_idxs, slice):
idxs = [_idxs] * len(clips)
else:
idxs = unfold(_idxs, num_frames, step)
return clips, idxs
def compute_clips(self, num_frames: int, step: int, frame_rate: Optional[float] = None) -> None:
"""
Compute all consecutive sequences of clips from video_pts.
Always returns clips of size `num_frames`, meaning that the
last few frames in a video can potentially be dropped.
Args:
num_frames (int): number of frames for the clip
step (int): distance between two clips
frame_rate (int, optional): The frame rate
"""
self.num_frames = num_frames
self.step = step
self.frame_rate = frame_rate
self.clips = []
self.resampling_idxs = []
for video_pts, fps in zip(self.video_pts, self.video_fps):
clips, idxs = self.compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate)
self.clips.append(clips)
self.resampling_idxs.append(idxs)
clip_lengths = torch.as_tensor([len(v) for v in self.clips])
self.cumulative_sizes = clip_lengths.cumsum(0).tolist()
def __len__(self) -> int:
return self.num_clips()
def num_videos(self) -> int:
return len(self.video_paths)
def num_clips(self) -> int:
"""
Number of subclips that are available in the video list.
"""
return self.cumulative_sizes[-1]
def get_clip_location(self, idx: int) -> Tuple[int, int]:
"""
Converts a flattened representation of the indices into a video_idx, clip_idx
representation.
"""
video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if video_idx == 0:
clip_idx = idx
else:
clip_idx = idx - self.cumulative_sizes[video_idx - 1]
return video_idx, clip_idx
@staticmethod
def _resample_video_idx(num_frames: int, original_fps: float, new_fps: float) -> Union[slice, torch.Tensor]:
step = original_fps / new_fps
if step.is_integer():
# optimization: if step is integer, don't need to perform
# advanced indexing
step = int(step)
return slice(None, None, step)
idxs = torch.arange(num_frames, dtype=torch.float32) * step
idxs = idxs.floor().to(torch.int64)
return idxs
def get_clip(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any], int]:
"""
Gets a subclip from a list of videos.
Args:
idx (int): index of the subclip. Must be between 0 and num_clips().
Returns:
video (Tensor)
audio (Tensor)
info (Dict)
video_idx (int): index of the video in `video_paths`
"""
if idx >= self.num_clips():
raise IndexError(f"Index {idx} out of range ({self.num_clips()} number of clips)")
video_idx, clip_idx = self.get_clip_location(idx)
video_path = self.video_paths[video_idx]
clip_pts = self.clips[video_idx][clip_idx]
from torchvision import get_video_backend
backend = get_video_backend()
if backend == "pyav":
# check for invalid options
if self._video_width != 0:
raise ValueError("pyav backend doesn't support _video_width != 0")
if self._video_height != 0:
raise ValueError("pyav backend doesn't support _video_height != 0")
if self._video_min_dimension != 0:
raise ValueError("pyav backend doesn't support _video_min_dimension != 0")
if self._video_max_dimension != 0:
raise ValueError("pyav backend doesn't support _video_max_dimension != 0")
if self._audio_samples != 0:
raise ValueError("pyav backend doesn't support _audio_samples != 0")
if backend == "pyav":
start_pts = clip_pts[0].item()
end_pts = clip_pts[-1].item()
video, audio, info = read_video(video_path, start_pts, end_pts)
else:
_info = _probe_video_from_file(video_path)
video_fps = _info.video_fps
audio_fps = None
video_start_pts = cast(int, clip_pts[0].item())
video_end_pts = cast(int, clip_pts[-1].item())
audio_start_pts, audio_end_pts = 0, -1
audio_timebase = Fraction(0, 1)
video_timebase = Fraction(_info.video_timebase.numerator, _info.video_timebase.denominator)
if _info.has_audio:
audio_timebase = Fraction(_info.audio_timebase.numerator, _info.audio_timebase.denominator)
audio_start_pts = pts_convert(video_start_pts, video_timebase, audio_timebase, math.floor)
audio_end_pts = pts_convert(video_end_pts, video_timebase, audio_timebase, math.ceil)
audio_fps = _info.audio_sample_rate
video, audio, _ = _read_video_from_file(
video_path,
video_width=self._video_width,
video_height=self._video_height,
video_min_dimension=self._video_min_dimension,
video_max_dimension=self._video_max_dimension,
video_pts_range=(video_start_pts, video_end_pts),
video_timebase=video_timebase,
audio_samples=self._audio_samples,
audio_channels=self._audio_channels,
audio_pts_range=(audio_start_pts, audio_end_pts),
audio_timebase=audio_timebase,
)
info = {"video_fps": video_fps}
if audio_fps is not None:
info["audio_fps"] = audio_fps
if self.frame_rate is not None:
resampling_idx = self.resampling_idxs[video_idx][clip_idx]
if isinstance(resampling_idx, torch.Tensor):
resampling_idx = resampling_idx - resampling_idx[0]
video = video[resampling_idx]
info["video_fps"] = self.frame_rate
assert len(video) == self.num_frames, f"{video.shape} x {self.num_frames}"
if self.output_format == "TCHW":
# [T,H,W,C] --> [T,C,H,W]
video = video.permute(0, 3, 1, 2)
return video, audio, info, video_idx
def __getstate__(self) -> Dict[str, Any]:
video_pts_sizes = [len(v) for v in self.video_pts]
# To be back-compatible, we convert data to dtype torch.long as needed
# because for empty list, in legacy implementation, torch.as_tensor will
# use torch.float as default dtype. This happens when decoding fails and
# no pts is returned in the list.
video_pts = [x.to(torch.int64) for x in self.video_pts]
# video_pts can be an empty list if no frames have been decoded
if video_pts:
video_pts = torch.cat(video_pts) # type: ignore[assignment]
# avoid bug in https://github.com/pytorch/pytorch/issues/32351
# TODO: Revert it once the bug is fixed.
video_pts = video_pts.numpy() # type: ignore[attr-defined]
# make a copy of the fields of self
d = self.__dict__.copy()
d["video_pts_sizes"] = video_pts_sizes
d["video_pts"] = video_pts
# delete the following attributes to reduce the size of dictionary. They
# will be re-computed in "__setstate__()"
del d["clips"]
del d["resampling_idxs"]
del d["cumulative_sizes"]
# for backwards-compatibility
d["_version"] = 2
return d
def __setstate__(self, d: Dict[str, Any]) -> None:
# for backwards-compatibility
if "_version" not in d:
self.__dict__ = d
return
video_pts = torch.as_tensor(d["video_pts"], dtype=torch.int64)
video_pts = torch.split(video_pts, d["video_pts_sizes"], dim=0)
# don't need this info anymore
del d["video_pts_sizes"]
d["video_pts"] = video_pts
self.__dict__ = d
# recompute attributes "clips", "resampling_idxs" and other derivative ones
self.compute_clips(self.num_frames, self.step, self.frame_rate)