Traktor/myenv/Lib/site-packages/torchvision/models/quantization/resnet.py
2024-05-26 05:12:46 +02:00

485 lines
18 KiB
Python

from functools import partial
from typing import Any, List, Optional, Type, Union
import torch
import torch.nn as nn
from torch import Tensor
from torchvision.models.resnet import (
BasicBlock,
Bottleneck,
ResNet,
ResNet18_Weights,
ResNet50_Weights,
ResNeXt101_32X8D_Weights,
ResNeXt101_64X4D_Weights,
)
from ...transforms._presets import ImageClassification
from .._api import register_model, Weights, WeightsEnum
from .._meta import _IMAGENET_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
from .utils import _fuse_modules, _replace_relu, quantize_model
__all__ = [
"QuantizableResNet",
"ResNet18_QuantizedWeights",
"ResNet50_QuantizedWeights",
"ResNeXt101_32X8D_QuantizedWeights",
"ResNeXt101_64X4D_QuantizedWeights",
"resnet18",
"resnet50",
"resnext101_32x8d",
"resnext101_64x4d",
]
class QuantizableBasicBlock(BasicBlock):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.add_relu = torch.nn.quantized.FloatFunctional()
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = self.add_relu.add_relu(out, identity)
return out
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
_fuse_modules(self, [["conv1", "bn1", "relu"], ["conv2", "bn2"]], is_qat, inplace=True)
if self.downsample:
_fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True)
class QuantizableBottleneck(Bottleneck):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.skip_add_relu = nn.quantized.FloatFunctional()
self.relu1 = nn.ReLU(inplace=False)
self.relu2 = nn.ReLU(inplace=False)
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = self.skip_add_relu.add_relu(out, identity)
return out
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
_fuse_modules(
self, [["conv1", "bn1", "relu1"], ["conv2", "bn2", "relu2"], ["conv3", "bn3"]], is_qat, inplace=True
)
if self.downsample:
_fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True)
class QuantizableResNet(ResNet):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.quant = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x: Tensor) -> Tensor:
x = self.quant(x)
# Ensure scriptability
# super(QuantizableResNet,self).forward(x)
# is not scriptable
x = self._forward_impl(x)
x = self.dequant(x)
return x
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
r"""Fuse conv/bn/relu modules in resnet models
Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization.
Model is modified in place. Note that this operation does not change numerics
and the model after modification is in floating point
"""
_fuse_modules(self, ["conv1", "bn1", "relu"], is_qat, inplace=True)
for m in self.modules():
if type(m) is QuantizableBottleneck or type(m) is QuantizableBasicBlock:
m.fuse_model(is_qat)
def _resnet(
block: Type[Union[QuantizableBasicBlock, QuantizableBottleneck]],
layers: List[int],
weights: Optional[WeightsEnum],
progress: bool,
quantize: bool,
**kwargs: Any,
) -> QuantizableResNet:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
if "backend" in weights.meta:
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
backend = kwargs.pop("backend", "fbgemm")
model = QuantizableResNet(block, layers, **kwargs)
_replace_relu(model)
if quantize:
quantize_model(model, backend)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
_COMMON_META = {
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
"backend": "fbgemm",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
"_docs": """
These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
weights listed below.
""",
}
class ResNet18_QuantizedWeights(WeightsEnum):
IMAGENET1K_FBGEMM_V1 = Weights(
url="https://download.pytorch.org/models/quantized/resnet18_fbgemm_16fa66dd.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 11689512,
"unquantized": ResNet18_Weights.IMAGENET1K_V1,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.494,
"acc@5": 88.882,
}
},
"_ops": 1.814,
"_file_size": 11.238,
},
)
DEFAULT = IMAGENET1K_FBGEMM_V1
class ResNet50_QuantizedWeights(WeightsEnum):
IMAGENET1K_FBGEMM_V1 = Weights(
url="https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 25557032,
"unquantized": ResNet50_Weights.IMAGENET1K_V1,
"_metrics": {
"ImageNet-1K": {
"acc@1": 75.920,
"acc@5": 92.814,
}
},
"_ops": 4.089,
"_file_size": 24.759,
},
)
IMAGENET1K_FBGEMM_V2 = Weights(
url="https://download.pytorch.org/models/quantized/resnet50_fbgemm-23753f79.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"num_params": 25557032,
"unquantized": ResNet50_Weights.IMAGENET1K_V2,
"_metrics": {
"ImageNet-1K": {
"acc@1": 80.282,
"acc@5": 94.976,
}
},
"_ops": 4.089,
"_file_size": 24.953,
},
)
DEFAULT = IMAGENET1K_FBGEMM_V2
class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum):
IMAGENET1K_FBGEMM_V1 = Weights(
url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm_09835ccf.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 88791336,
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V1,
"_metrics": {
"ImageNet-1K": {
"acc@1": 78.986,
"acc@5": 94.480,
}
},
"_ops": 16.414,
"_file_size": 86.034,
},
)
IMAGENET1K_FBGEMM_V2 = Weights(
url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm-ee16d00c.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"num_params": 88791336,
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V2,
"_metrics": {
"ImageNet-1K": {
"acc@1": 82.574,
"acc@5": 96.132,
}
},
"_ops": 16.414,
"_file_size": 86.645,
},
)
DEFAULT = IMAGENET1K_FBGEMM_V2
class ResNeXt101_64X4D_QuantizedWeights(WeightsEnum):
IMAGENET1K_FBGEMM_V1 = Weights(
url="https://download.pytorch.org/models/quantized/resnext101_64x4d_fbgemm-605a1cb3.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"num_params": 83455272,
"recipe": "https://github.com/pytorch/vision/pull/5935",
"unquantized": ResNeXt101_64X4D_Weights.IMAGENET1K_V1,
"_metrics": {
"ImageNet-1K": {
"acc@1": 82.898,
"acc@5": 96.326,
}
},
"_ops": 15.46,
"_file_size": 81.556,
},
)
DEFAULT = IMAGENET1K_FBGEMM_V1
@register_model(name="quantized_resnet18")
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: ResNet18_QuantizedWeights.IMAGENET1K_FBGEMM_V1
if kwargs.get("quantize", False)
else ResNet18_Weights.IMAGENET1K_V1,
)
)
def resnet18(
*,
weights: Optional[Union[ResNet18_QuantizedWeights, ResNet18_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableResNet:
"""ResNet-18 model from
`Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_
.. note::
Note that ``quantize = True`` returns a quantized model with 8 bit
weights. Quantized models only support inference and run on CPUs.
GPU inference is not yet supported.
Args:
weights (:class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` or :class:`~torchvision.models.ResNet18_Weights`, optional): The
pretrained weights for the model. See
:class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
quantize (bool, optional): If True, return a quantized version of the model. Default is False.
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.quantization.ResNet18_QuantizedWeights
:members:
.. autoclass:: torchvision.models.ResNet18_Weights
:members:
:noindex:
"""
weights = (ResNet18_QuantizedWeights if quantize else ResNet18_Weights).verify(weights)
return _resnet(QuantizableBasicBlock, [2, 2, 2, 2], weights, progress, quantize, **kwargs)
@register_model(name="quantized_resnet50")
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1
if kwargs.get("quantize", False)
else ResNet50_Weights.IMAGENET1K_V1,
)
)
def resnet50(
*,
weights: Optional[Union[ResNet50_QuantizedWeights, ResNet50_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableResNet:
"""ResNet-50 model from
`Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_
.. note::
Note that ``quantize = True`` returns a quantized model with 8 bit
weights. Quantized models only support inference and run on CPUs.
GPU inference is not yet supported.
Args:
weights (:class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` or :class:`~torchvision.models.ResNet50_Weights`, optional): The
pretrained weights for the model. See
:class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
quantize (bool, optional): If True, return a quantized version of the model. Default is False.
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.quantization.ResNet50_QuantizedWeights
:members:
.. autoclass:: torchvision.models.ResNet50_Weights
:members:
:noindex:
"""
weights = (ResNet50_QuantizedWeights if quantize else ResNet50_Weights).verify(weights)
return _resnet(QuantizableBottleneck, [3, 4, 6, 3], weights, progress, quantize, **kwargs)
@register_model(name="quantized_resnext101_32x8d")
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V1
if kwargs.get("quantize", False)
else ResNeXt101_32X8D_Weights.IMAGENET1K_V1,
)
)
def resnext101_32x8d(
*,
weights: Optional[Union[ResNeXt101_32X8D_QuantizedWeights, ResNeXt101_32X8D_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableResNet:
"""ResNeXt-101 32x8d model from
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_
.. note::
Note that ``quantize = True`` returns a quantized model with 8 bit
weights. Quantized models only support inference and run on CPUs.
GPU inference is not yet supported.
Args:
weights (:class:`~torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
pretrained weights for the model. See
:class:`~torchvision.models.quantization.ResNet101_32X8D_QuantizedWeights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
quantize (bool, optional): If True, return a quantized version of the model. Default is False.
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights
:members:
.. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
:members:
:noindex:
"""
weights = (ResNeXt101_32X8D_QuantizedWeights if quantize else ResNeXt101_32X8D_Weights).verify(weights)
_ovewrite_named_param(kwargs, "groups", 32)
_ovewrite_named_param(kwargs, "width_per_group", 8)
return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs)
@register_model(name="quantized_resnext101_64x4d")
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: ResNeXt101_64X4D_QuantizedWeights.IMAGENET1K_FBGEMM_V1
if kwargs.get("quantize", False)
else ResNeXt101_64X4D_Weights.IMAGENET1K_V1,
)
)
def resnext101_64x4d(
*,
weights: Optional[Union[ResNeXt101_64X4D_QuantizedWeights, ResNeXt101_64X4D_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableResNet:
"""ResNeXt-101 64x4d model from
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_
.. note::
Note that ``quantize = True`` returns a quantized model with 8 bit
weights. Quantized models only support inference and run on CPUs.
GPU inference is not yet supported.
Args:
weights (:class:`~torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
pretrained weights for the model. See
:class:`~torchvision.models.quantization.ResNet101_64X4D_QuantizedWeights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
quantize (bool, optional): If True, return a quantized version of the model. Default is False.
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights
:members:
.. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
:members:
:noindex:
"""
weights = (ResNeXt101_64X4D_QuantizedWeights if quantize else ResNeXt101_64X4D_Weights).verify(weights)
_ovewrite_named_param(kwargs, "groups", 64)
_ovewrite_named_param(kwargs, "width_per_group", 4)
return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs)