Traktor/myenv/Lib/site-packages/torchvision/models/quantization/utils.py
2024-05-26 05:12:46 +02:00

52 lines
2.0 KiB
Python

from typing import Any, List, Optional, Union
import torch
from torch import nn
def _replace_relu(module: nn.Module) -> None:
reassign = {}
for name, mod in module.named_children():
_replace_relu(mod)
# Checking for explicit type instead of instance
# as we only want to replace modules of the exact type
# not inherited classes
if type(mod) is nn.ReLU or type(mod) is nn.ReLU6:
reassign[name] = nn.ReLU(inplace=False)
for key, value in reassign.items():
module._modules[key] = value
def quantize_model(model: nn.Module, backend: str) -> None:
_dummy_input_data = torch.rand(1, 3, 299, 299)
if backend not in torch.backends.quantized.supported_engines:
raise RuntimeError("Quantized backend not supported ")
torch.backends.quantized.engine = backend
model.eval()
# Make sure that weight qconfig matches that of the serialized models
if backend == "fbgemm":
model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment]
activation=torch.ao.quantization.default_observer,
weight=torch.ao.quantization.default_per_channel_weight_observer,
)
elif backend == "qnnpack":
model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment]
activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_weight_observer
)
# TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
model.fuse_model() # type: ignore[operator]
torch.ao.quantization.prepare(model, inplace=True)
model(_dummy_input_data)
torch.ao.quantization.convert(model, inplace=True)
def _fuse_modules(
model: nn.Module, modules_to_fuse: Union[List[str], List[List[str]]], is_qat: Optional[bool], **kwargs: Any
):
if is_qat is None:
is_qat = model.training
method = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules
return method(model, modules_to_fuse, **kwargs)