225 lines
7.7 KiB
Python
225 lines
7.7 KiB
Python
"""
|
|
Torture tests for asymptotics and high precision evaluation of
|
|
special functions.
|
|
|
|
(Other torture tests may also be placed here.)
|
|
|
|
Running this file (gmpy recommended!) takes several CPU minutes.
|
|
With Python 2.6+, multiprocessing is used automatically to run tests
|
|
in parallel if many cores are available. (A single test may take between
|
|
a second and several minutes; possibly more.)
|
|
|
|
The idea:
|
|
|
|
* We evaluate functions at positive, negative, imaginary, 45- and 135-degree
|
|
complex values with magnitudes between 10^-20 to 10^20, at precisions between
|
|
5 and 150 digits (we can go even higher for fast functions).
|
|
|
|
* Comparing the result from two different precision levels provides
|
|
a strong consistency check (particularly for functions that use
|
|
different algorithms at different precision levels).
|
|
|
|
* That the computation finishes at all (without failure), within reasonable
|
|
time, provides a check that evaluation works at all: that the code runs,
|
|
that it doesn't get stuck in an infinite loop, and that it doesn't use
|
|
some extremely slowly algorithm where it could use a faster one.
|
|
|
|
TODO:
|
|
|
|
* Speed up those functions that take long to finish!
|
|
* Generalize to test more cases; more options.
|
|
* Implement a timeout mechanism.
|
|
* Some functions are notably absent, including the following:
|
|
* inverse trigonometric functions (some become inaccurate for complex arguments)
|
|
* ci, si (not implemented properly for large complex arguments)
|
|
* zeta functions (need to modify test not to try too large imaginary values)
|
|
* and others...
|
|
|
|
"""
|
|
|
|
|
|
import sys, os
|
|
from timeit import default_timer as clock
|
|
|
|
if "-nogmpy" in sys.argv:
|
|
sys.argv.remove('-nogmpy')
|
|
os.environ['MPMATH_NOGMPY'] = 'Y'
|
|
|
|
filt = ''
|
|
if not sys.argv[-1].endswith(".py"):
|
|
filt = sys.argv[-1]
|
|
|
|
from mpmath import *
|
|
from mpmath.libmp.backend import exec_
|
|
|
|
def test_asymp(f, maxdps=150, verbose=False, huge_range=False):
|
|
dps = [5,15,25,50,90,150,500,1500,5000,10000]
|
|
dps = [p for p in dps if p <= maxdps]
|
|
def check(x,y,p,inpt):
|
|
if abs(x-y)/abs(y) < workprec(20)(power)(10, -p+1):
|
|
return
|
|
print()
|
|
print("Error!")
|
|
print("Input:", inpt)
|
|
print("dps =", p)
|
|
print("Result 1:", x)
|
|
print("Result 2:", y)
|
|
print("Absolute error:", abs(x-y))
|
|
print("Relative error:", abs(x-y)/abs(y))
|
|
raise AssertionError
|
|
exponents = range(-20,20)
|
|
if huge_range:
|
|
exponents += [-1000, -100, -50, 50, 100, 1000]
|
|
for n in exponents:
|
|
if verbose:
|
|
sys.stdout.write(". ")
|
|
mp.dps = 25
|
|
xpos = mpf(10)**n / 1.1287
|
|
xneg = -xpos
|
|
ximag = xpos*j
|
|
xcomplex1 = xpos*(1+j)
|
|
xcomplex2 = xpos*(-1+j)
|
|
for i in range(len(dps)):
|
|
if verbose:
|
|
print("Testing dps = %s" % dps[i])
|
|
mp.dps = dps[i]
|
|
new = f(xpos), f(xneg), f(ximag), f(xcomplex1), f(xcomplex2)
|
|
if i != 0:
|
|
p = dps[i-1]
|
|
check(prev[0], new[0], p, xpos)
|
|
check(prev[1], new[1], p, xneg)
|
|
check(prev[2], new[2], p, ximag)
|
|
check(prev[3], new[3], p, xcomplex1)
|
|
check(prev[4], new[4], p, xcomplex2)
|
|
prev = new
|
|
if verbose:
|
|
print()
|
|
|
|
a1, a2, a3, a4, a5 = 1.5, -2.25, 3.125, 4, 2
|
|
|
|
def test_bernoulli_huge():
|
|
p, q = bernfrac(9000)
|
|
assert p % 10**10 == 9636701091
|
|
assert q == 4091851784687571609141381951327092757255270
|
|
mp.dps = 15
|
|
assert str(bernoulli(10**100)) == '-2.58183325604736e+987675256497386331227838638980680030172857347883537824464410652557820800494271520411283004120790908623'
|
|
mp.dps = 50
|
|
assert str(bernoulli(10**100)) == '-2.5818332560473632073252488656039475548106223822913e+987675256497386331227838638980680030172857347883537824464410652557820800494271520411283004120790908623'
|
|
mp.dps = 15
|
|
|
|
cases = """\
|
|
test_bernoulli_huge()
|
|
test_asymp(lambda z: +pi, maxdps=10000)
|
|
test_asymp(lambda z: +e, maxdps=10000)
|
|
test_asymp(lambda z: +ln2, maxdps=10000)
|
|
test_asymp(lambda z: +ln10, maxdps=10000)
|
|
test_asymp(lambda z: +phi, maxdps=10000)
|
|
test_asymp(lambda z: +catalan, maxdps=5000)
|
|
test_asymp(lambda z: +euler, maxdps=5000)
|
|
test_asymp(lambda z: +glaisher, maxdps=1000)
|
|
test_asymp(lambda z: +khinchin, maxdps=1000)
|
|
test_asymp(lambda z: +twinprime, maxdps=150)
|
|
test_asymp(lambda z: stieltjes(2), maxdps=150)
|
|
test_asymp(lambda z: +mertens, maxdps=150)
|
|
test_asymp(lambda z: +apery, maxdps=5000)
|
|
test_asymp(sqrt, maxdps=10000, huge_range=True)
|
|
test_asymp(cbrt, maxdps=5000, huge_range=True)
|
|
test_asymp(lambda z: root(z,4), maxdps=5000, huge_range=True)
|
|
test_asymp(lambda z: root(z,-5), maxdps=5000, huge_range=True)
|
|
test_asymp(exp, maxdps=5000, huge_range=True)
|
|
test_asymp(expm1, maxdps=1500)
|
|
test_asymp(ln, maxdps=5000, huge_range=True)
|
|
test_asymp(cosh, maxdps=5000)
|
|
test_asymp(sinh, maxdps=5000)
|
|
test_asymp(tanh, maxdps=1500)
|
|
test_asymp(sin, maxdps=5000, huge_range=True)
|
|
test_asymp(cos, maxdps=5000, huge_range=True)
|
|
test_asymp(tan, maxdps=1500)
|
|
test_asymp(agm, maxdps=1500, huge_range=True)
|
|
test_asymp(ellipk, maxdps=1500)
|
|
test_asymp(ellipe, maxdps=1500)
|
|
test_asymp(lambertw, huge_range=True)
|
|
test_asymp(lambda z: lambertw(z,-1))
|
|
test_asymp(lambda z: lambertw(z,1))
|
|
test_asymp(lambda z: lambertw(z,4))
|
|
test_asymp(gamma)
|
|
test_asymp(loggamma) # huge_range=True ?
|
|
test_asymp(ei)
|
|
test_asymp(e1)
|
|
test_asymp(li, huge_range=True)
|
|
test_asymp(ci)
|
|
test_asymp(si)
|
|
test_asymp(chi)
|
|
test_asymp(shi)
|
|
test_asymp(erf)
|
|
test_asymp(erfc)
|
|
test_asymp(erfi)
|
|
test_asymp(lambda z: besselj(2, z))
|
|
test_asymp(lambda z: bessely(2, z))
|
|
test_asymp(lambda z: besseli(2, z))
|
|
test_asymp(lambda z: besselk(2, z))
|
|
test_asymp(lambda z: besselj(-2.25, z))
|
|
test_asymp(lambda z: bessely(-2.25, z))
|
|
test_asymp(lambda z: besseli(-2.25, z))
|
|
test_asymp(lambda z: besselk(-2.25, z))
|
|
test_asymp(airyai)
|
|
test_asymp(airybi)
|
|
test_asymp(lambda z: hyp0f1(a1, z))
|
|
test_asymp(lambda z: hyp1f1(a1, a2, z))
|
|
test_asymp(lambda z: hyp1f2(a1, a2, a3, z))
|
|
test_asymp(lambda z: hyp2f0(a1, a2, z))
|
|
test_asymp(lambda z: hyperu(a1, a2, z))
|
|
test_asymp(lambda z: hyp2f1(a1, a2, a3, z))
|
|
test_asymp(lambda z: hyp2f2(a1, a2, a3, a4, z))
|
|
test_asymp(lambda z: hyp2f3(a1, a2, a3, a4, a5, z))
|
|
test_asymp(lambda z: coulombf(a1, a2, z))
|
|
test_asymp(lambda z: coulombg(a1, a2, z))
|
|
test_asymp(lambda z: polylog(2,z))
|
|
test_asymp(lambda z: polylog(3,z))
|
|
test_asymp(lambda z: polylog(-2,z))
|
|
test_asymp(lambda z: expint(4, z))
|
|
test_asymp(lambda z: expint(-4, z))
|
|
test_asymp(lambda z: expint(2.25, z))
|
|
test_asymp(lambda z: gammainc(2.5, z, 5))
|
|
test_asymp(lambda z: gammainc(2.5, 5, z))
|
|
test_asymp(lambda z: hermite(3, z))
|
|
test_asymp(lambda z: hermite(2.5, z))
|
|
test_asymp(lambda z: legendre(3, z))
|
|
test_asymp(lambda z: legendre(4, z))
|
|
test_asymp(lambda z: legendre(2.5, z))
|
|
test_asymp(lambda z: legenp(a1, a2, z))
|
|
test_asymp(lambda z: legenq(a1, a2, z), maxdps=90) # abnormally slow
|
|
test_asymp(lambda z: jtheta(1, z, 0.5))
|
|
test_asymp(lambda z: jtheta(2, z, 0.5))
|
|
test_asymp(lambda z: jtheta(3, z, 0.5))
|
|
test_asymp(lambda z: jtheta(4, z, 0.5))
|
|
test_asymp(lambda z: jtheta(1, z, 0.5, 1))
|
|
test_asymp(lambda z: jtheta(2, z, 0.5, 1))
|
|
test_asymp(lambda z: jtheta(3, z, 0.5, 1))
|
|
test_asymp(lambda z: jtheta(4, z, 0.5, 1))
|
|
test_asymp(barnesg, maxdps=90)
|
|
"""
|
|
|
|
def testit(line):
|
|
if filt in line:
|
|
print(line)
|
|
t1 = clock()
|
|
exec_(line, globals(), locals())
|
|
t2 = clock()
|
|
elapsed = t2-t1
|
|
print("Time:", elapsed, "for", line, "(OK)")
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
from multiprocessing import Pool
|
|
mapf = Pool(None).map
|
|
print("Running tests with multiprocessing")
|
|
except ImportError:
|
|
print("Not using multiprocessing")
|
|
mapf = map
|
|
t1 = clock()
|
|
tasks = cases.splitlines()
|
|
mapf(testit, tasks)
|
|
t2 = clock()
|
|
print("Cumulative wall time:", t2-t1)
|