380 lines
13 KiB
Python
380 lines
13 KiB
Python
from __future__ import print_function, division, absolute_import
|
|
|
|
import asyncio
|
|
import concurrent.futures
|
|
import contextlib
|
|
|
|
import time
|
|
from uuid import uuid4
|
|
import weakref
|
|
|
|
from .parallel import parallel_config
|
|
from .parallel import AutoBatchingMixin, ParallelBackendBase
|
|
|
|
from ._utils import (
|
|
_TracebackCapturingWrapper,
|
|
_retrieve_traceback_capturing_wrapped_call
|
|
)
|
|
|
|
try:
|
|
import dask
|
|
import distributed
|
|
except ImportError:
|
|
dask = None
|
|
distributed = None
|
|
|
|
if dask is not None and distributed is not None:
|
|
from dask.utils import funcname
|
|
from dask.sizeof import sizeof
|
|
from dask.distributed import (
|
|
Client,
|
|
as_completed,
|
|
get_client,
|
|
secede,
|
|
rejoin,
|
|
)
|
|
from distributed.utils import thread_state
|
|
|
|
try:
|
|
# asyncio.TimeoutError, Python3-only error thrown by recent versions of
|
|
# distributed
|
|
from distributed.utils import TimeoutError as _TimeoutError
|
|
except ImportError:
|
|
from tornado.gen import TimeoutError as _TimeoutError
|
|
|
|
|
|
def is_weakrefable(obj):
|
|
try:
|
|
weakref.ref(obj)
|
|
return True
|
|
except TypeError:
|
|
return False
|
|
|
|
|
|
class _WeakKeyDictionary:
|
|
"""A variant of weakref.WeakKeyDictionary for unhashable objects.
|
|
|
|
This datastructure is used to store futures for broadcasted data objects
|
|
such as large numpy arrays or pandas dataframes that are not hashable and
|
|
therefore cannot be used as keys of traditional python dicts.
|
|
|
|
Furthermore using a dict with id(array) as key is not safe because the
|
|
Python is likely to reuse id of recently collected arrays.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._data = {}
|
|
|
|
def __getitem__(self, obj):
|
|
ref, val = self._data[id(obj)]
|
|
if ref() is not obj:
|
|
# In case of a race condition with on_destroy.
|
|
raise KeyError(obj)
|
|
return val
|
|
|
|
def __setitem__(self, obj, value):
|
|
key = id(obj)
|
|
try:
|
|
ref, _ = self._data[key]
|
|
if ref() is not obj:
|
|
# In case of race condition with on_destroy.
|
|
raise KeyError(obj)
|
|
except KeyError:
|
|
# Insert the new entry in the mapping along with a weakref
|
|
# callback to automatically delete the entry from the mapping
|
|
# as soon as the object used as key is garbage collected.
|
|
def on_destroy(_):
|
|
del self._data[key]
|
|
ref = weakref.ref(obj, on_destroy)
|
|
self._data[key] = ref, value
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
def clear(self):
|
|
self._data.clear()
|
|
|
|
|
|
def _funcname(x):
|
|
try:
|
|
if isinstance(x, list):
|
|
x = x[0][0]
|
|
except Exception:
|
|
pass
|
|
return funcname(x)
|
|
|
|
|
|
def _make_tasks_summary(tasks):
|
|
"""Summarize of list of (func, args, kwargs) function calls"""
|
|
unique_funcs = {func for func, args, kwargs in tasks}
|
|
|
|
if len(unique_funcs) == 1:
|
|
mixed = False
|
|
else:
|
|
mixed = True
|
|
return len(tasks), mixed, _funcname(tasks)
|
|
|
|
|
|
class Batch:
|
|
"""dask-compatible wrapper that executes a batch of tasks"""
|
|
def __init__(self, tasks):
|
|
# collect some metadata from the tasks to ease Batch calls
|
|
# introspection when debugging
|
|
self._num_tasks, self._mixed, self._funcname = _make_tasks_summary(
|
|
tasks
|
|
)
|
|
|
|
def __call__(self, tasks=None):
|
|
results = []
|
|
with parallel_config(backend='dask'):
|
|
for func, args, kwargs in tasks:
|
|
results.append(func(*args, **kwargs))
|
|
return results
|
|
|
|
def __repr__(self):
|
|
descr = f"batch_of_{self._funcname}_{self._num_tasks}_calls"
|
|
if self._mixed:
|
|
descr = "mixed_" + descr
|
|
return descr
|
|
|
|
|
|
def _joblib_probe_task():
|
|
# Noop used by the joblib connector to probe when workers are ready.
|
|
pass
|
|
|
|
|
|
class DaskDistributedBackend(AutoBatchingMixin, ParallelBackendBase):
|
|
MIN_IDEAL_BATCH_DURATION = 0.2
|
|
MAX_IDEAL_BATCH_DURATION = 1.0
|
|
supports_retrieve_callback = True
|
|
default_n_jobs = -1
|
|
|
|
def __init__(self, scheduler_host=None, scatter=None,
|
|
client=None, loop=None, wait_for_workers_timeout=10,
|
|
**submit_kwargs):
|
|
super().__init__()
|
|
|
|
if distributed is None:
|
|
msg = ("You are trying to use 'dask' as a joblib parallel backend "
|
|
"but dask is not installed. Please install dask "
|
|
"to fix this error.")
|
|
raise ValueError(msg)
|
|
|
|
if client is None:
|
|
if scheduler_host:
|
|
client = Client(scheduler_host, loop=loop,
|
|
set_as_default=False)
|
|
else:
|
|
try:
|
|
client = get_client()
|
|
except ValueError as e:
|
|
msg = ("To use Joblib with Dask first create a Dask Client"
|
|
"\n\n"
|
|
" from dask.distributed import Client\n"
|
|
" client = Client()\n"
|
|
"or\n"
|
|
" client = Client('scheduler-address:8786')")
|
|
raise ValueError(msg) from e
|
|
|
|
self.client = client
|
|
|
|
if scatter is not None and not isinstance(scatter, (list, tuple)):
|
|
raise TypeError("scatter must be a list/tuple, got "
|
|
"`%s`" % type(scatter).__name__)
|
|
|
|
if scatter is not None and len(scatter) > 0:
|
|
# Keep a reference to the scattered data to keep the ids the same
|
|
self._scatter = list(scatter)
|
|
scattered = self.client.scatter(scatter, broadcast=True)
|
|
self.data_futures = {id(x): f for x, f in zip(scatter, scattered)}
|
|
else:
|
|
self._scatter = []
|
|
self.data_futures = {}
|
|
self.wait_for_workers_timeout = wait_for_workers_timeout
|
|
self.submit_kwargs = submit_kwargs
|
|
self.waiting_futures = as_completed(
|
|
[],
|
|
loop=client.loop,
|
|
with_results=True,
|
|
raise_errors=False
|
|
)
|
|
self._results = {}
|
|
self._callbacks = {}
|
|
|
|
async def _collect(self):
|
|
while self._continue:
|
|
async for future, result in self.waiting_futures:
|
|
cf_future = self._results.pop(future)
|
|
callback = self._callbacks.pop(future)
|
|
if future.status == "error":
|
|
typ, exc, tb = result
|
|
cf_future.set_exception(exc)
|
|
else:
|
|
cf_future.set_result(result)
|
|
callback(result)
|
|
await asyncio.sleep(0.01)
|
|
|
|
def __reduce__(self):
|
|
return (DaskDistributedBackend, ())
|
|
|
|
def get_nested_backend(self):
|
|
return DaskDistributedBackend(client=self.client), -1
|
|
|
|
def configure(self, n_jobs=1, parallel=None, **backend_args):
|
|
self.parallel = parallel
|
|
return self.effective_n_jobs(n_jobs)
|
|
|
|
def start_call(self):
|
|
self._continue = True
|
|
self.client.loop.add_callback(self._collect)
|
|
self.call_data_futures = _WeakKeyDictionary()
|
|
|
|
def stop_call(self):
|
|
# The explicit call to clear is required to break a cycling reference
|
|
# to the futures.
|
|
self._continue = False
|
|
# wait for the future collection routine (self._backend._collect) to
|
|
# finish in order to limit asyncio warnings due to aborting _collect
|
|
# during a following backend termination call
|
|
time.sleep(0.01)
|
|
self.call_data_futures.clear()
|
|
|
|
def effective_n_jobs(self, n_jobs):
|
|
effective_n_jobs = sum(self.client.ncores().values())
|
|
if effective_n_jobs != 0 or not self.wait_for_workers_timeout:
|
|
return effective_n_jobs
|
|
|
|
# If there is no worker, schedule a probe task to wait for the workers
|
|
# to come up and be available. If the dask cluster is in adaptive mode
|
|
# task might cause the cluster to provision some workers.
|
|
try:
|
|
self.client.submit(_joblib_probe_task).result(
|
|
timeout=self.wait_for_workers_timeout
|
|
)
|
|
except _TimeoutError as e:
|
|
error_msg = (
|
|
"DaskDistributedBackend has no worker after {} seconds. "
|
|
"Make sure that workers are started and can properly connect "
|
|
"to the scheduler and increase the joblib/dask connection "
|
|
"timeout with:\n\n"
|
|
"parallel_config(backend='dask', wait_for_workers_timeout={})"
|
|
).format(self.wait_for_workers_timeout,
|
|
max(10, 2 * self.wait_for_workers_timeout))
|
|
raise TimeoutError(error_msg) from e
|
|
return sum(self.client.ncores().values())
|
|
|
|
async def _to_func_args(self, func):
|
|
itemgetters = dict()
|
|
|
|
# Futures that are dynamically generated during a single call to
|
|
# Parallel.__call__.
|
|
call_data_futures = getattr(self, 'call_data_futures', None)
|
|
|
|
async def maybe_to_futures(args):
|
|
out = []
|
|
for arg in args:
|
|
arg_id = id(arg)
|
|
if arg_id in itemgetters:
|
|
out.append(itemgetters[arg_id])
|
|
continue
|
|
|
|
f = self.data_futures.get(arg_id, None)
|
|
if f is None and call_data_futures is not None:
|
|
try:
|
|
f = await call_data_futures[arg]
|
|
except KeyError:
|
|
pass
|
|
if f is None:
|
|
if is_weakrefable(arg) and sizeof(arg) > 1e3:
|
|
# Automatically scatter large objects to some of
|
|
# the workers to avoid duplicated data transfers.
|
|
# Rely on automated inter-worker data stealing if
|
|
# more workers need to reuse this data
|
|
# concurrently.
|
|
# set hash=False - nested scatter calls (i.e
|
|
# calling client.scatter inside a dask worker)
|
|
# using hash=True often raise CancelledError,
|
|
# see dask/distributed#3703
|
|
_coro = self.client.scatter(
|
|
arg,
|
|
asynchronous=True,
|
|
hash=False
|
|
)
|
|
# Centralize the scattering of identical arguments
|
|
# between concurrent apply_async callbacks by
|
|
# exposing the running coroutine in
|
|
# call_data_futures before it completes.
|
|
t = asyncio.Task(_coro)
|
|
call_data_futures[arg] = t
|
|
|
|
f = await t
|
|
|
|
if f is not None:
|
|
out.append(f)
|
|
else:
|
|
out.append(arg)
|
|
return out
|
|
|
|
tasks = []
|
|
for f, args, kwargs in func.items:
|
|
args = list(await maybe_to_futures(args))
|
|
kwargs = dict(zip(kwargs.keys(),
|
|
await maybe_to_futures(kwargs.values())))
|
|
tasks.append((f, args, kwargs))
|
|
|
|
return (Batch(tasks), tasks)
|
|
|
|
def apply_async(self, func, callback=None):
|
|
|
|
cf_future = concurrent.futures.Future()
|
|
cf_future.get = cf_future.result # achieve AsyncResult API
|
|
|
|
async def f(func, callback):
|
|
batch, tasks = await self._to_func_args(func)
|
|
key = f'{repr(batch)}-{uuid4().hex}'
|
|
|
|
dask_future = self.client.submit(
|
|
_TracebackCapturingWrapper(batch),
|
|
tasks=tasks,
|
|
key=key,
|
|
**self.submit_kwargs
|
|
)
|
|
self.waiting_futures.add(dask_future)
|
|
self._callbacks[dask_future] = callback
|
|
self._results[dask_future] = cf_future
|
|
|
|
self.client.loop.add_callback(f, func, callback)
|
|
|
|
return cf_future
|
|
|
|
def retrieve_result_callback(self, out):
|
|
return _retrieve_traceback_capturing_wrapped_call(out)
|
|
|
|
def abort_everything(self, ensure_ready=True):
|
|
""" Tell the client to cancel any task submitted via this instance
|
|
|
|
joblib.Parallel will never access those results
|
|
"""
|
|
with self.waiting_futures.lock:
|
|
self.waiting_futures.futures.clear()
|
|
while not self.waiting_futures.queue.empty():
|
|
self.waiting_futures.queue.get()
|
|
|
|
@contextlib.contextmanager
|
|
def retrieval_context(self):
|
|
"""Override ParallelBackendBase.retrieval_context to avoid deadlocks.
|
|
|
|
This removes thread from the worker's thread pool (using 'secede').
|
|
Seceding avoids deadlock in nested parallelism settings.
|
|
"""
|
|
# See 'joblib.Parallel.__call__' and 'joblib.Parallel.retrieve' for how
|
|
# this is used.
|
|
if hasattr(thread_state, 'execution_state'):
|
|
# we are in a worker. Secede to avoid deadlock.
|
|
secede()
|
|
|
|
yield
|
|
|
|
if hasattr(thread_state, 'execution_state'):
|
|
rejoin()
|