Traktor/myenv/Lib/site-packages/pandas/_typing.py
2024-05-26 05:12:46 +02:00

526 lines
14 KiB
Python

from __future__ import annotations
from collections.abc import (
Hashable,
Iterator,
Mapping,
MutableMapping,
Sequence,
)
from datetime import (
date,
datetime,
timedelta,
tzinfo,
)
from os import PathLike
import sys
from typing import (
TYPE_CHECKING,
Any,
Callable,
Literal,
Optional,
Protocol,
Type as type_t,
TypeVar,
Union,
overload,
)
import numpy as np
# To prevent import cycles place any internal imports in the branch below
# and use a string literal forward reference to it in subsequent types
# https://mypy.readthedocs.io/en/latest/common_issues.html#import-cycles
if TYPE_CHECKING:
import numpy.typing as npt
from pandas._libs import (
NaTType,
Period,
Timedelta,
Timestamp,
)
from pandas._libs.tslibs import BaseOffset
from pandas.core.dtypes.dtypes import ExtensionDtype
from pandas import Interval
from pandas.arrays import (
DatetimeArray,
TimedeltaArray,
)
from pandas.core.arrays.base import ExtensionArray
from pandas.core.frame import DataFrame
from pandas.core.generic import NDFrame
from pandas.core.groupby.generic import (
DataFrameGroupBy,
GroupBy,
SeriesGroupBy,
)
from pandas.core.indexes.base import Index
from pandas.core.internals import (
ArrayManager,
BlockManager,
SingleArrayManager,
SingleBlockManager,
)
from pandas.core.resample import Resampler
from pandas.core.series import Series
from pandas.core.window.rolling import BaseWindow
from pandas.io.formats.format import EngFormatter
from pandas.tseries.holiday import AbstractHolidayCalendar
ScalarLike_co = Union[
int,
float,
complex,
str,
bytes,
np.generic,
]
# numpy compatible types
NumpyValueArrayLike = Union[ScalarLike_co, npt.ArrayLike]
# Name "npt._ArrayLikeInt_co" is not defined [name-defined]
NumpySorter = Optional[npt._ArrayLikeInt_co] # type: ignore[name-defined]
from typing import SupportsIndex
if sys.version_info >= (3, 10):
from typing import TypeGuard # pyright: ignore[reportUnusedImport]
else:
from typing_extensions import TypeGuard # pyright: ignore[reportUnusedImport]
if sys.version_info >= (3, 11):
from typing import Self # pyright: ignore[reportUnusedImport]
else:
from typing_extensions import Self # pyright: ignore[reportUnusedImport]
else:
npt: Any = None
Self: Any = None
TypeGuard: Any = None
HashableT = TypeVar("HashableT", bound=Hashable)
MutableMappingT = TypeVar("MutableMappingT", bound=MutableMapping)
# array-like
ArrayLike = Union["ExtensionArray", np.ndarray]
AnyArrayLike = Union[ArrayLike, "Index", "Series"]
TimeArrayLike = Union["DatetimeArray", "TimedeltaArray"]
# list-like
# from https://github.com/hauntsaninja/useful_types
# includes Sequence-like objects but excludes str and bytes
_T_co = TypeVar("_T_co", covariant=True)
class SequenceNotStr(Protocol[_T_co]):
@overload
def __getitem__(self, index: SupportsIndex, /) -> _T_co:
...
@overload
def __getitem__(self, index: slice, /) -> Sequence[_T_co]:
...
def __contains__(self, value: object, /) -> bool:
...
def __len__(self) -> int:
...
def __iter__(self) -> Iterator[_T_co]:
...
def index(self, value: Any, /, start: int = 0, stop: int = ...) -> int:
...
def count(self, value: Any, /) -> int:
...
def __reversed__(self) -> Iterator[_T_co]:
...
ListLike = Union[AnyArrayLike, SequenceNotStr, range]
# scalars
PythonScalar = Union[str, float, bool]
DatetimeLikeScalar = Union["Period", "Timestamp", "Timedelta"]
PandasScalar = Union["Period", "Timestamp", "Timedelta", "Interval"]
Scalar = Union[PythonScalar, PandasScalar, np.datetime64, np.timedelta64, date]
IntStrT = TypeVar("IntStrT", bound=Union[int, str])
# timestamp and timedelta convertible types
TimestampConvertibleTypes = Union[
"Timestamp", date, np.datetime64, np.int64, float, str
]
TimestampNonexistent = Union[
Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta
]
TimedeltaConvertibleTypes = Union[
"Timedelta", timedelta, np.timedelta64, np.int64, float, str
]
Timezone = Union[str, tzinfo]
ToTimestampHow = Literal["s", "e", "start", "end"]
# NDFrameT is stricter and ensures that the same subclass of NDFrame always is
# used. E.g. `def func(a: NDFrameT) -> NDFrameT: ...` means that if a
# Series is passed into a function, a Series is always returned and if a DataFrame is
# passed in, a DataFrame is always returned.
NDFrameT = TypeVar("NDFrameT", bound="NDFrame")
NumpyIndexT = TypeVar("NumpyIndexT", np.ndarray, "Index")
AxisInt = int
Axis = Union[AxisInt, Literal["index", "columns", "rows"]]
IndexLabel = Union[Hashable, Sequence[Hashable]]
Level = Hashable
Shape = tuple[int, ...]
Suffixes = tuple[Optional[str], Optional[str]]
Ordered = Optional[bool]
JSONSerializable = Optional[Union[PythonScalar, list, dict]]
Frequency = Union[str, "BaseOffset"]
Axes = ListLike
RandomState = Union[
int,
np.ndarray,
np.random.Generator,
np.random.BitGenerator,
np.random.RandomState,
]
# dtypes
NpDtype = Union[str, np.dtype, type_t[Union[str, complex, bool, object]]]
Dtype = Union["ExtensionDtype", NpDtype]
AstypeArg = Union["ExtensionDtype", "npt.DTypeLike"]
# DtypeArg specifies all allowable dtypes in a functions its dtype argument
DtypeArg = Union[Dtype, dict[Hashable, Dtype]]
DtypeObj = Union[np.dtype, "ExtensionDtype"]
# converters
ConvertersArg = dict[Hashable, Callable[[Dtype], Dtype]]
# parse_dates
ParseDatesArg = Union[
bool, list[Hashable], list[list[Hashable]], dict[Hashable, list[Hashable]]
]
# For functions like rename that convert one label to another
Renamer = Union[Mapping[Any, Hashable], Callable[[Any], Hashable]]
# to maintain type information across generic functions and parametrization
T = TypeVar("T")
# used in decorators to preserve the signature of the function it decorates
# see https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators
FuncType = Callable[..., Any]
F = TypeVar("F", bound=FuncType)
# types of vectorized key functions for DataFrame::sort_values and
# DataFrame::sort_index, among others
ValueKeyFunc = Optional[Callable[["Series"], Union["Series", AnyArrayLike]]]
IndexKeyFunc = Optional[Callable[["Index"], Union["Index", AnyArrayLike]]]
# types of `func` kwarg for DataFrame.aggregate and Series.aggregate
AggFuncTypeBase = Union[Callable, str]
AggFuncTypeDict = MutableMapping[
Hashable, Union[AggFuncTypeBase, list[AggFuncTypeBase]]
]
AggFuncType = Union[
AggFuncTypeBase,
list[AggFuncTypeBase],
AggFuncTypeDict,
]
AggObjType = Union[
"Series",
"DataFrame",
"GroupBy",
"SeriesGroupBy",
"DataFrameGroupBy",
"BaseWindow",
"Resampler",
]
PythonFuncType = Callable[[Any], Any]
# filenames and file-like-objects
AnyStr_co = TypeVar("AnyStr_co", str, bytes, covariant=True)
AnyStr_contra = TypeVar("AnyStr_contra", str, bytes, contravariant=True)
class BaseBuffer(Protocol):
@property
def mode(self) -> str:
# for _get_filepath_or_buffer
...
def seek(self, __offset: int, __whence: int = ...) -> int:
# with one argument: gzip.GzipFile, bz2.BZ2File
# with two arguments: zip.ZipFile, read_sas
...
def seekable(self) -> bool:
# for bz2.BZ2File
...
def tell(self) -> int:
# for zip.ZipFile, read_stata, to_stata
...
class ReadBuffer(BaseBuffer, Protocol[AnyStr_co]):
def read(self, __n: int = ...) -> AnyStr_co:
# for BytesIOWrapper, gzip.GzipFile, bz2.BZ2File
...
class WriteBuffer(BaseBuffer, Protocol[AnyStr_contra]):
def write(self, __b: AnyStr_contra) -> Any:
# for gzip.GzipFile, bz2.BZ2File
...
def flush(self) -> Any:
# for gzip.GzipFile, bz2.BZ2File
...
class ReadPickleBuffer(ReadBuffer[bytes], Protocol):
def readline(self) -> bytes:
...
class WriteExcelBuffer(WriteBuffer[bytes], Protocol):
def truncate(self, size: int | None = ...) -> int:
...
class ReadCsvBuffer(ReadBuffer[AnyStr_co], Protocol):
def __iter__(self) -> Iterator[AnyStr_co]:
# for engine=python
...
def fileno(self) -> int:
# for _MMapWrapper
...
def readline(self) -> AnyStr_co:
# for engine=python
...
@property
def closed(self) -> bool:
# for enine=pyarrow
...
FilePath = Union[str, "PathLike[str]"]
# for arbitrary kwargs passed during reading/writing files
StorageOptions = Optional[dict[str, Any]]
# compression keywords and compression
CompressionDict = dict[str, Any]
CompressionOptions = Optional[
Union[Literal["infer", "gzip", "bz2", "zip", "xz", "zstd", "tar"], CompressionDict]
]
# types in DataFrameFormatter
FormattersType = Union[
list[Callable], tuple[Callable, ...], Mapping[Union[str, int], Callable]
]
ColspaceType = Mapping[Hashable, Union[str, int]]
FloatFormatType = Union[str, Callable, "EngFormatter"]
ColspaceArgType = Union[
str, int, Sequence[Union[str, int]], Mapping[Hashable, Union[str, int]]
]
# Arguments for fillna()
FillnaOptions = Literal["backfill", "bfill", "ffill", "pad"]
InterpolateOptions = Literal[
"linear",
"time",
"index",
"values",
"nearest",
"zero",
"slinear",
"quadratic",
"cubic",
"barycentric",
"polynomial",
"krogh",
"piecewise_polynomial",
"spline",
"pchip",
"akima",
"cubicspline",
"from_derivatives",
]
# internals
Manager = Union[
"ArrayManager", "SingleArrayManager", "BlockManager", "SingleBlockManager"
]
SingleManager = Union["SingleArrayManager", "SingleBlockManager"]
Manager2D = Union["ArrayManager", "BlockManager"]
# indexing
# PositionalIndexer -> valid 1D positional indexer, e.g. can pass
# to ndarray.__getitem__
# ScalarIndexer is for a single value as the index
# SequenceIndexer is for list like or slices (but not tuples)
# PositionalIndexerTuple is extends the PositionalIndexer for 2D arrays
# These are used in various __getitem__ overloads
# TODO(typing#684): add Ellipsis, see
# https://github.com/python/typing/issues/684#issuecomment-548203158
# https://bugs.python.org/issue41810
# Using List[int] here rather than Sequence[int] to disallow tuples.
ScalarIndexer = Union[int, np.integer]
SequenceIndexer = Union[slice, list[int], np.ndarray]
PositionalIndexer = Union[ScalarIndexer, SequenceIndexer]
PositionalIndexerTuple = tuple[PositionalIndexer, PositionalIndexer]
PositionalIndexer2D = Union[PositionalIndexer, PositionalIndexerTuple]
if TYPE_CHECKING:
TakeIndexer = Union[Sequence[int], Sequence[np.integer], npt.NDArray[np.integer]]
else:
TakeIndexer = Any
# Shared by functions such as drop and astype
IgnoreRaise = Literal["ignore", "raise"]
# Windowing rank methods
WindowingRankType = Literal["average", "min", "max"]
# read_csv engines
CSVEngine = Literal["c", "python", "pyarrow", "python-fwf"]
# read_json engines
JSONEngine = Literal["ujson", "pyarrow"]
# read_xml parsers
XMLParsers = Literal["lxml", "etree"]
# read_html flavors
HTMLFlavors = Literal["lxml", "html5lib", "bs4"]
# Interval closed type
IntervalLeftRight = Literal["left", "right"]
IntervalClosedType = Union[IntervalLeftRight, Literal["both", "neither"]]
# datetime and NaTType
DatetimeNaTType = Union[datetime, "NaTType"]
DateTimeErrorChoices = Union[IgnoreRaise, Literal["coerce"]]
# sort_index
SortKind = Literal["quicksort", "mergesort", "heapsort", "stable"]
NaPosition = Literal["first", "last"]
# Arguments for nsmalles and n_largest
NsmallestNlargestKeep = Literal["first", "last", "all"]
# quantile interpolation
QuantileInterpolation = Literal["linear", "lower", "higher", "midpoint", "nearest"]
# plotting
PlottingOrientation = Literal["horizontal", "vertical"]
# dropna
AnyAll = Literal["any", "all"]
# merge
MergeHow = Literal["left", "right", "inner", "outer", "cross"]
MergeValidate = Literal[
"one_to_one",
"1:1",
"one_to_many",
"1:m",
"many_to_one",
"m:1",
"many_to_many",
"m:m",
]
# join
JoinHow = Literal["left", "right", "inner", "outer"]
JoinValidate = Literal[
"one_to_one",
"1:1",
"one_to_many",
"1:m",
"many_to_one",
"m:1",
"many_to_many",
"m:m",
]
# reindex
ReindexMethod = Union[FillnaOptions, Literal["nearest"]]
MatplotlibColor = Union[str, Sequence[float]]
TimeGrouperOrigin = Union[
"Timestamp", Literal["epoch", "start", "start_day", "end", "end_day"]
]
TimeAmbiguous = Union[Literal["infer", "NaT", "raise"], "npt.NDArray[np.bool_]"]
TimeNonexistent = Union[
Literal["shift_forward", "shift_backward", "NaT", "raise"], timedelta
]
DropKeep = Literal["first", "last", False]
CorrelationMethod = Union[
Literal["pearson", "kendall", "spearman"], Callable[[np.ndarray, np.ndarray], float]
]
AlignJoin = Literal["outer", "inner", "left", "right"]
DtypeBackend = Literal["pyarrow", "numpy_nullable"]
TimeUnit = Literal["s", "ms", "us", "ns"]
OpenFileErrors = Literal[
"strict",
"ignore",
"replace",
"surrogateescape",
"xmlcharrefreplace",
"backslashreplace",
"namereplace",
]
# update
UpdateJoin = Literal["left"]
# applymap
NaAction = Literal["ignore"]
# from_dict
FromDictOrient = Literal["columns", "index", "tight"]
# to_gbc
ToGbqIfexist = Literal["fail", "replace", "append"]
# to_stata
ToStataByteorder = Literal[">", "<", "little", "big"]
# ExcelWriter
ExcelWriterIfSheetExists = Literal["error", "new", "replace", "overlay"]
# Offsets
OffsetCalendar = Union[np.busdaycalendar, "AbstractHolidayCalendar"]
# read_csv: usecols
UsecolsArgType = Union[
SequenceNotStr[Hashable],
range,
AnyArrayLike,
Callable[[HashableT], bool],
None,
]