Traktor/myenv/Lib/site-packages/pandas/tests/arithmetic/test_numeric.py
2024-05-26 05:12:46 +02:00

1568 lines
54 KiB
Python

# Arithmetic tests for DataFrame/Series/Index/Array classes that should
# behave identically.
# Specifically for numeric dtypes
from __future__ import annotations
from collections import abc
from datetime import timedelta
from decimal import Decimal
import operator
import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
RangeIndex,
Series,
Timedelta,
TimedeltaIndex,
array,
date_range,
)
import pandas._testing as tm
from pandas.core import ops
from pandas.core.computation import expressions as expr
from pandas.tests.arithmetic.common import (
assert_invalid_addsub_type,
assert_invalid_comparison,
)
@pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"])
def switch_numexpr_min_elements(request, monkeypatch):
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", request.param)
yield request.param
@pytest.fixture(params=[Index, Series, tm.to_array])
def box_pandas_1d_array(request):
"""
Fixture to test behavior for Index, Series and tm.to_array classes
"""
return request.param
@pytest.fixture(
params=[
# TODO: add more dtypes here
Index(np.arange(5, dtype="float64")),
Index(np.arange(5, dtype="int64")),
Index(np.arange(5, dtype="uint64")),
RangeIndex(5),
],
ids=lambda x: type(x).__name__,
)
def numeric_idx(request):
"""
Several types of numeric-dtypes Index objects
"""
return request.param
@pytest.fixture(
params=[Index, Series, tm.to_array, np.array, list], ids=lambda x: x.__name__
)
def box_1d_array(request):
"""
Fixture to test behavior for Index, Series, tm.to_array, numpy Array and list
classes
"""
return request.param
def adjust_negative_zero(zero, expected):
"""
Helper to adjust the expected result if we are dividing by -0.0
as opposed to 0.0
"""
if np.signbit(np.array(zero)).any():
# All entries in the `zero` fixture should be either
# all-negative or no-negative.
assert np.signbit(np.array(zero)).all()
expected *= -1
return expected
def compare_op(series, other, op):
left = np.abs(series) if op in (ops.rpow, operator.pow) else series
right = np.abs(other) if op in (ops.rpow, operator.pow) else other
cython_or_numpy = op(left, right)
python = left.combine(right, op)
if isinstance(other, Series) and not other.index.equals(series.index):
python.index = python.index._with_freq(None)
tm.assert_series_equal(cython_or_numpy, python)
# TODO: remove this kludge once mypy stops giving false positives here
# List comprehension has incompatible type List[PandasObject]; expected List[RangeIndex]
# See GH#29725
_ldtypes = ["i1", "i2", "i4", "i8", "u1", "u2", "u4", "u8", "f2", "f4", "f8"]
lefts: list[Index | Series] = [RangeIndex(10, 40, 10)]
lefts.extend([Series([10, 20, 30], dtype=dtype) for dtype in _ldtypes])
lefts.extend([Index([10, 20, 30], dtype=dtype) for dtype in _ldtypes if dtype != "f2"])
# ------------------------------------------------------------------
# Comparisons
class TestNumericComparisons:
def test_operator_series_comparison_zerorank(self):
# GH#13006
result = np.float64(0) > Series([1, 2, 3])
expected = 0.0 > Series([1, 2, 3])
tm.assert_series_equal(result, expected)
result = Series([1, 2, 3]) < np.float64(0)
expected = Series([1, 2, 3]) < 0.0
tm.assert_series_equal(result, expected)
result = np.array([0, 1, 2])[0] > Series([0, 1, 2])
expected = 0.0 > Series([1, 2, 3])
tm.assert_series_equal(result, expected)
def test_df_numeric_cmp_dt64_raises(self, box_with_array, fixed_now_ts):
# GH#8932, GH#22163
ts = fixed_now_ts
obj = np.array(range(5))
obj = tm.box_expected(obj, box_with_array)
assert_invalid_comparison(obj, ts, box_with_array)
def test_compare_invalid(self):
# GH#8058
# ops testing
a = Series(np.random.default_rng(2).standard_normal(5), name=0)
b = Series(np.random.default_rng(2).standard_normal(5))
b.name = pd.Timestamp("2000-01-01")
tm.assert_series_equal(a / b, 1 / (b / a))
def test_numeric_cmp_string_numexpr_path(self, box_with_array, monkeypatch):
# GH#36377, GH#35700
box = box_with_array
xbox = box if box is not Index else np.ndarray
obj = Series(np.random.default_rng(2).standard_normal(51))
obj = tm.box_expected(obj, box, transpose=False)
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", 50)
result = obj == "a"
expected = Series(np.zeros(51, dtype=bool))
expected = tm.box_expected(expected, xbox, transpose=False)
tm.assert_equal(result, expected)
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", 50)
result = obj != "a"
tm.assert_equal(result, ~expected)
msg = "Invalid comparison between dtype=float64 and str"
with pytest.raises(TypeError, match=msg):
obj < "a"
# ------------------------------------------------------------------
# Numeric dtypes Arithmetic with Datetime/Timedelta Scalar
class TestNumericArraylikeArithmeticWithDatetimeLike:
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
@pytest.mark.parametrize(
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
)
def test_mul_td64arr(self, left, box_cls):
# GH#22390
right = np.array([1, 2, 3], dtype="m8[s]")
right = box_cls(right)
expected = TimedeltaIndex(["10s", "40s", "90s"], dtype=right.dtype)
if isinstance(left, Series) or box_cls is Series:
expected = Series(expected)
assert expected.dtype == right.dtype
result = left * right
tm.assert_equal(result, expected)
result = right * left
tm.assert_equal(result, expected)
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
@pytest.mark.parametrize(
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
)
def test_div_td64arr(self, left, box_cls):
# GH#22390
right = np.array([10, 40, 90], dtype="m8[s]")
right = box_cls(right)
expected = TimedeltaIndex(["1s", "2s", "3s"], dtype=right.dtype)
if isinstance(left, Series) or box_cls is Series:
expected = Series(expected)
assert expected.dtype == right.dtype
result = right / left
tm.assert_equal(result, expected)
result = right // left
tm.assert_equal(result, expected)
# (true_) needed for min-versions build 2022-12-26
msg = "ufunc '(true_)?divide' cannot use operands with types"
with pytest.raises(TypeError, match=msg):
left / right
msg = "ufunc 'floor_divide' cannot use operands with types"
with pytest.raises(TypeError, match=msg):
left // right
# TODO: also test Tick objects;
# see test_numeric_arr_rdiv_tdscalar for note on these failing
@pytest.mark.parametrize(
"scalar_td",
[
Timedelta(days=1),
Timedelta(days=1).to_timedelta64(),
Timedelta(days=1).to_pytimedelta(),
Timedelta(days=1).to_timedelta64().astype("timedelta64[s]"),
Timedelta(days=1).to_timedelta64().astype("timedelta64[ms]"),
],
ids=lambda x: type(x).__name__,
)
def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box_with_array):
# GH#19333
box = box_with_array
index = numeric_idx
expected = TimedeltaIndex([Timedelta(days=n) for n in range(len(index))])
if isinstance(scalar_td, np.timedelta64):
dtype = scalar_td.dtype
expected = expected.astype(dtype)
elif type(scalar_td) is timedelta:
expected = expected.astype("m8[us]")
index = tm.box_expected(index, box)
expected = tm.box_expected(expected, box)
result = index * scalar_td
tm.assert_equal(result, expected)
commute = scalar_td * index
tm.assert_equal(commute, expected)
@pytest.mark.parametrize(
"scalar_td",
[
Timedelta(days=1),
Timedelta(days=1).to_timedelta64(),
Timedelta(days=1).to_pytimedelta(),
],
ids=lambda x: type(x).__name__,
)
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
def test_numeric_arr_mul_tdscalar_numexpr_path(
self, dtype, scalar_td, box_with_array
):
# GH#44772 for the float64 case
box = box_with_array
arr_i8 = np.arange(2 * 10**4).astype(np.int64, copy=False)
arr = arr_i8.astype(dtype, copy=False)
obj = tm.box_expected(arr, box, transpose=False)
expected = arr_i8.view("timedelta64[D]").astype("timedelta64[ns]")
if type(scalar_td) is timedelta:
expected = expected.astype("timedelta64[us]")
expected = tm.box_expected(expected, box, transpose=False)
result = obj * scalar_td
tm.assert_equal(result, expected)
result = scalar_td * obj
tm.assert_equal(result, expected)
def test_numeric_arr_rdiv_tdscalar(self, three_days, numeric_idx, box_with_array):
box = box_with_array
index = numeric_idx[1:3]
expected = TimedeltaIndex(["3 Days", "36 Hours"])
if isinstance(three_days, np.timedelta64):
dtype = three_days.dtype
if dtype < np.dtype("m8[s]"):
# i.e. resolution is lower -> use lowest supported resolution
dtype = np.dtype("m8[s]")
expected = expected.astype(dtype)
elif type(three_days) is timedelta:
expected = expected.astype("m8[us]")
elif isinstance(
three_days,
(pd.offsets.Day, pd.offsets.Hour, pd.offsets.Minute, pd.offsets.Second),
):
# closest reso is Second
expected = expected.astype("m8[s]")
index = tm.box_expected(index, box)
expected = tm.box_expected(expected, box)
result = three_days / index
tm.assert_equal(result, expected)
msg = "cannot use operands with types dtype"
with pytest.raises(TypeError, match=msg):
index / three_days
@pytest.mark.parametrize(
"other",
[
Timedelta(hours=31),
Timedelta(hours=31).to_pytimedelta(),
Timedelta(hours=31).to_timedelta64(),
Timedelta(hours=31).to_timedelta64().astype("m8[h]"),
np.timedelta64("NaT"),
np.timedelta64("NaT", "D"),
pd.offsets.Minute(3),
pd.offsets.Second(0),
# GH#28080 numeric+datetimelike should raise; Timestamp used
# to raise NullFrequencyError but that behavior was removed in 1.0
pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
pd.Timestamp("2021-01-01"),
pd.Timestamp("2021-01-01").to_pydatetime(),
pd.Timestamp("2021-01-01", tz="UTC").to_pydatetime(),
pd.Timestamp("2021-01-01").to_datetime64(),
np.datetime64("NaT", "ns"),
pd.NaT,
],
ids=repr,
)
def test_add_sub_datetimedeltalike_invalid(
self, numeric_idx, other, box_with_array
):
box = box_with_array
left = tm.box_expected(numeric_idx, box)
msg = "|".join(
[
"unsupported operand type",
"Addition/subtraction of integers and integer-arrays",
"Instead of adding/subtracting",
"cannot use operands with types dtype",
"Concatenation operation is not implemented for NumPy arrays",
"Cannot (add|subtract) NaT (to|from) ndarray",
# pd.array vs np.datetime64 case
r"operand type\(s\) all returned NotImplemented from __array_ufunc__",
"can only perform ops with numeric values",
"cannot subtract DatetimeArray from ndarray",
# pd.Timedelta(1) + Index([0, 1, 2])
"Cannot add or subtract Timedelta from integers",
]
)
assert_invalid_addsub_type(left, other, msg)
# ------------------------------------------------------------------
# Arithmetic
class TestDivisionByZero:
def test_div_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
# We only adjust for Index, because Series does not yet apply
# the adjustment correctly.
expected2 = adjust_negative_zero(zero, expected)
result = idx / zero
tm.assert_index_equal(result, expected2)
ser_compat = Series(idx).astype("i8") / np.array(zero).astype("i8")
tm.assert_series_equal(ser_compat, Series(expected))
def test_floordiv_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
# We only adjust for Index, because Series does not yet apply
# the adjustment correctly.
expected2 = adjust_negative_zero(zero, expected)
result = idx // zero
tm.assert_index_equal(result, expected2)
ser_compat = Series(idx).astype("i8") // np.array(zero).astype("i8")
tm.assert_series_equal(ser_compat, Series(expected))
def test_mod_zero(self, zero, numeric_idx):
idx = numeric_idx
expected = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
result = idx % zero
tm.assert_index_equal(result, expected)
ser_compat = Series(idx).astype("i8") % np.array(zero).astype("i8")
tm.assert_series_equal(ser_compat, Series(result))
def test_divmod_zero(self, zero, numeric_idx):
idx = numeric_idx
exleft = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
exright = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
exleft = adjust_negative_zero(zero, exleft)
result = divmod(idx, zero)
tm.assert_index_equal(result[0], exleft)
tm.assert_index_equal(result[1], exright)
@pytest.mark.parametrize("op", [operator.truediv, operator.floordiv])
def test_div_negative_zero(self, zero, numeric_idx, op):
# Check that -1 / -0.0 returns np.inf, not -np.inf
if numeric_idx.dtype == np.uint64:
pytest.skip(f"Div by negative 0 not relevant for {numeric_idx.dtype}")
idx = numeric_idx - 3
expected = Index([-np.inf, -np.inf, -np.inf, np.nan, np.inf], dtype=np.float64)
expected = adjust_negative_zero(zero, expected)
result = op(idx, zero)
tm.assert_index_equal(result, expected)
# ------------------------------------------------------------------
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
def test_ser_div_ser(
self,
switch_numexpr_min_elements,
dtype1,
any_real_numpy_dtype,
):
# no longer do integer div for any ops, but deal with the 0's
dtype2 = any_real_numpy_dtype
first = Series([3, 4, 5, 8], name="first").astype(dtype1)
second = Series([0, 0, 0, 3], name="second").astype(dtype2)
with np.errstate(all="ignore"):
expected = Series(
first.values.astype(np.float64) / second.values,
dtype="float64",
name=None,
)
expected.iloc[0:3] = np.inf
if first.dtype == "int64" and second.dtype == "float32":
# when using numexpr, the casting rules are slightly different
# and int64/float32 combo results in float32 instead of float64
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
expected = expected.astype("float32")
result = first / second
tm.assert_series_equal(result, expected)
assert not result.equals(second / first)
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
def test_ser_divmod_zero(self, dtype1, any_real_numpy_dtype):
# GH#26987
dtype2 = any_real_numpy_dtype
left = Series([1, 1]).astype(dtype1)
right = Series([0, 2]).astype(dtype2)
# GH#27321 pandas convention is to set 1 // 0 to np.inf, as opposed
# to numpy which sets to np.nan; patch `expected[0]` below
expected = left // right, left % right
expected = list(expected)
expected[0] = expected[0].astype(np.float64)
expected[0][0] = np.inf
result = divmod(left, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
# rdivmod case
result = divmod(left.values, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
def test_ser_divmod_inf(self):
left = Series([np.inf, 1.0])
right = Series([np.inf, 2.0])
expected = left // right, left % right
result = divmod(left, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
# rdivmod case
result = divmod(left.values, right)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
def test_rdiv_zero_compat(self):
# GH#8674
zero_array = np.array([0] * 5)
data = np.random.default_rng(2).standard_normal(5)
expected = Series([0.0] * 5)
result = zero_array / Series(data)
tm.assert_series_equal(result, expected)
result = Series(zero_array) / data
tm.assert_series_equal(result, expected)
result = Series(zero_array) / Series(data)
tm.assert_series_equal(result, expected)
def test_div_zero_inf_signs(self):
# GH#9144, inf signing
ser = Series([-1, 0, 1], name="first")
expected = Series([-np.inf, np.nan, np.inf], name="first")
result = ser / 0
tm.assert_series_equal(result, expected)
def test_rdiv_zero(self):
# GH#9144
ser = Series([-1, 0, 1], name="first")
expected = Series([0.0, np.nan, 0.0], name="first")
result = 0 / ser
tm.assert_series_equal(result, expected)
def test_floordiv_div(self):
# GH#9144
ser = Series([-1, 0, 1], name="first")
result = ser // 0
expected = Series([-np.inf, np.nan, np.inf], name="first")
tm.assert_series_equal(result, expected)
def test_df_div_zero_df(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = df / df
first = Series([1.0, 1.0, 1.0, 1.0])
second = Series([np.nan, np.nan, np.nan, 1])
expected = pd.DataFrame({"first": first, "second": second})
tm.assert_frame_equal(result, expected)
def test_df_div_zero_array(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
first = Series([1.0, 1.0, 1.0, 1.0])
second = Series([np.nan, np.nan, np.nan, 1])
expected = pd.DataFrame({"first": first, "second": second})
with np.errstate(all="ignore"):
arr = df.values.astype("float") / df.values
result = pd.DataFrame(arr, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
def test_df_div_zero_int(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = df / 0
expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns)
expected.iloc[0:3, 1] = np.nan
tm.assert_frame_equal(result, expected)
# numpy has a slightly different (wrong) treatment
with np.errstate(all="ignore"):
arr = df.values.astype("float64") / 0
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
tm.assert_frame_equal(result2, expected)
def test_df_div_zero_series_does_not_commute(self):
# integer div, but deal with the 0's (GH#9144)
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
ser = df[0]
res = ser / df
res2 = df / ser
assert not res.fillna(0).equals(res2.fillna(0))
# ------------------------------------------------------------------
# Mod By Zero
def test_df_mod_zero_df(self, using_array_manager):
# GH#3590, modulo as ints
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
# this is technically wrong, as the integer portion is coerced to float
first = Series([0, 0, 0, 0])
if not using_array_manager:
# INFO(ArrayManager) BlockManager doesn't preserve dtype per column
# while ArrayManager performs op column-wisedoes and thus preserves
# dtype if possible
first = first.astype("float64")
second = Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({"first": first, "second": second})
result = df % df
tm.assert_frame_equal(result, expected)
# GH#38939 If we dont pass copy=False, df is consolidated and
# result["first"] is float64 instead of int64
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}, copy=False)
first = Series([0, 0, 0, 0], dtype="int64")
second = Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({"first": first, "second": second})
result = df % df
tm.assert_frame_equal(result, expected)
def test_df_mod_zero_array(self):
# GH#3590, modulo as ints
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
# this is technically wrong, as the integer portion is coerced to float
# ###
first = Series([0, 0, 0, 0], dtype="float64")
second = Series([np.nan, np.nan, np.nan, 0])
expected = pd.DataFrame({"first": first, "second": second})
# numpy has a slightly different (wrong) treatment
with np.errstate(all="ignore"):
arr = df.values % df.values
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype="float64")
result2.iloc[0:3, 1] = np.nan
tm.assert_frame_equal(result2, expected)
def test_df_mod_zero_int(self):
# GH#3590, modulo as ints
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = df % 0
expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
# numpy has a slightly different (wrong) treatment
with np.errstate(all="ignore"):
arr = df.values.astype("float64") % 0
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
tm.assert_frame_equal(result2, expected)
def test_df_mod_zero_series_does_not_commute(self):
# GH#3590, modulo as ints
# not commutative with series
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
ser = df[0]
res = ser % df
res2 = df % ser
assert not res.fillna(0).equals(res2.fillna(0))
class TestMultiplicationDivision:
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
# for non-timestamp/timedelta/period dtypes
def test_divide_decimal(self, box_with_array):
# resolves issue GH#9787
box = box_with_array
ser = Series([Decimal(10)])
expected = Series([Decimal(5)])
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = ser / Decimal(2)
tm.assert_equal(result, expected)
result = ser // Decimal(2)
tm.assert_equal(result, expected)
def test_div_equiv_binop(self):
# Test Series.div as well as Series.__div__
# float/integer issue
# GH#7785
first = Series([1, 0], name="first")
second = Series([-0.01, -0.02], name="second")
expected = Series([-0.01, -np.inf])
result = second.div(first)
tm.assert_series_equal(result, expected, check_names=False)
result = second / first
tm.assert_series_equal(result, expected)
def test_div_int(self, numeric_idx):
idx = numeric_idx
result = idx / 1
expected = idx.astype("float64")
tm.assert_index_equal(result, expected)
result = idx / 2
expected = Index(idx.values / 2)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("op", [operator.mul, ops.rmul, operator.floordiv])
def test_mul_int_identity(self, op, numeric_idx, box_with_array):
idx = numeric_idx
idx = tm.box_expected(idx, box_with_array)
result = op(idx, 1)
tm.assert_equal(result, idx)
def test_mul_int_array(self, numeric_idx):
idx = numeric_idx
didx = idx * idx
result = idx * np.array(5, dtype="int64")
tm.assert_index_equal(result, idx * 5)
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
result = idx * np.arange(5, dtype=arr_dtype)
tm.assert_index_equal(result, didx)
def test_mul_int_series(self, numeric_idx):
idx = numeric_idx
didx = idx * idx
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
result = idx * Series(np.arange(5, dtype=arr_dtype))
tm.assert_series_equal(result, Series(didx))
def test_mul_float_series(self, numeric_idx):
idx = numeric_idx
rng5 = np.arange(5, dtype="float64")
result = idx * Series(rng5 + 0.1)
expected = Series(rng5 * (rng5 + 0.1))
tm.assert_series_equal(result, expected)
def test_mul_index(self, numeric_idx):
idx = numeric_idx
result = idx * idx
tm.assert_index_equal(result, idx**2)
def test_mul_datelike_raises(self, numeric_idx):
idx = numeric_idx
msg = "cannot perform __rmul__ with this index type"
with pytest.raises(TypeError, match=msg):
idx * date_range("20130101", periods=5)
def test_mul_size_mismatch_raises(self, numeric_idx):
idx = numeric_idx
msg = "operands could not be broadcast together"
with pytest.raises(ValueError, match=msg):
idx * idx[0:3]
with pytest.raises(ValueError, match=msg):
idx * np.array([1, 2])
@pytest.mark.parametrize("op", [operator.pow, ops.rpow])
def test_pow_float(self, op, numeric_idx, box_with_array):
# test power calculations both ways, GH#14973
box = box_with_array
idx = numeric_idx
expected = Index(op(idx.values, 2.0))
idx = tm.box_expected(idx, box)
expected = tm.box_expected(expected, box)
result = op(idx, 2.0)
tm.assert_equal(result, expected)
def test_modulo(self, numeric_idx, box_with_array):
# GH#9244
box = box_with_array
idx = numeric_idx
expected = Index(idx.values % 2)
idx = tm.box_expected(idx, box)
expected = tm.box_expected(expected, box)
result = idx % 2
tm.assert_equal(result, expected)
def test_divmod_scalar(self, numeric_idx):
idx = numeric_idx
result = divmod(idx, 2)
with np.errstate(all="ignore"):
div, mod = divmod(idx.values, 2)
expected = Index(div), Index(mod)
for r, e in zip(result, expected):
tm.assert_index_equal(r, e)
def test_divmod_ndarray(self, numeric_idx):
idx = numeric_idx
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
result = divmod(idx, other)
with np.errstate(all="ignore"):
div, mod = divmod(idx.values, other)
expected = Index(div), Index(mod)
for r, e in zip(result, expected):
tm.assert_index_equal(r, e)
def test_divmod_series(self, numeric_idx):
idx = numeric_idx
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
result = divmod(idx, Series(other))
with np.errstate(all="ignore"):
div, mod = divmod(idx.values, other)
expected = Series(div), Series(mod)
for r, e in zip(result, expected):
tm.assert_series_equal(r, e)
@pytest.mark.parametrize("other", [np.nan, 7, -23, 2.718, -3.14, np.inf])
def test_ops_np_scalar(self, other):
vals = np.random.default_rng(2).standard_normal((5, 3))
f = lambda x: pd.DataFrame(
x, index=list("ABCDE"), columns=["jim", "joe", "jolie"]
)
df = f(vals)
tm.assert_frame_equal(df / np.array(other), f(vals / other))
tm.assert_frame_equal(np.array(other) * df, f(vals * other))
tm.assert_frame_equal(df + np.array(other), f(vals + other))
tm.assert_frame_equal(np.array(other) - df, f(other - vals))
# TODO: This came from series.test.test_operators, needs cleanup
def test_operators_frame(self):
# rpow does not work with DataFrame
ts = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
ts.name = "ts"
df = pd.DataFrame({"A": ts})
tm.assert_series_equal(ts + ts, ts + df["A"], check_names=False)
tm.assert_series_equal(ts**ts, ts ** df["A"], check_names=False)
tm.assert_series_equal(ts < ts, ts < df["A"], check_names=False)
tm.assert_series_equal(ts / ts, ts / df["A"], check_names=False)
# TODO: this came from tests.series.test_analytics, needs cleanup and
# de-duplication with test_modulo above
def test_modulo2(self):
with np.errstate(all="ignore"):
# GH#3590, modulo as ints
p = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
result = p["first"] % p["second"]
expected = Series(p["first"].values % p["second"].values, dtype="float64")
expected.iloc[0:3] = np.nan
tm.assert_series_equal(result, expected)
result = p["first"] % 0
expected = Series(np.nan, index=p.index, name="first")
tm.assert_series_equal(result, expected)
p = p.astype("float64")
result = p["first"] % p["second"]
expected = Series(p["first"].values % p["second"].values)
tm.assert_series_equal(result, expected)
p = p.astype("float64")
result = p["first"] % p["second"]
result2 = p["second"] % p["first"]
assert not result.equals(result2)
def test_modulo_zero_int(self):
# GH#9144
with np.errstate(all="ignore"):
s = Series([0, 1])
result = s % 0
expected = Series([np.nan, np.nan])
tm.assert_series_equal(result, expected)
result = 0 % s
expected = Series([np.nan, 0.0])
tm.assert_series_equal(result, expected)
class TestAdditionSubtraction:
# __add__, __sub__, __radd__, __rsub__, __iadd__, __isub__
# for non-timestamp/timedelta/period dtypes
@pytest.mark.parametrize(
"first, second, expected",
[
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2], index=list("ABD"), name="x"),
Series([3.0, 4.0, np.nan, np.nan], index=list("ABCD"), name="x"),
),
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
Series([3, 4, 5, np.nan], index=list("ABCD"), name="x"),
),
],
)
def test_add_series(self, first, second, expected):
# GH#1134
tm.assert_series_equal(first + second, expected)
tm.assert_series_equal(second + first, expected)
@pytest.mark.parametrize(
"first, second, expected",
[
(
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
pd.DataFrame({"x": [2, 2, 2]}, index=list("ABD")),
pd.DataFrame({"x": [3.0, 4.0, np.nan, np.nan]}, index=list("ABCD")),
),
(
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
pd.DataFrame({"x": [2, 2, 2, 2]}, index=list("ABCD")),
pd.DataFrame({"x": [3, 4, 5, np.nan]}, index=list("ABCD")),
),
],
)
def test_add_frames(self, first, second, expected):
# GH#1134
tm.assert_frame_equal(first + second, expected)
tm.assert_frame_equal(second + first, expected)
# TODO: This came from series.test.test_operators, needs cleanup
def test_series_frame_radd_bug(self, fixed_now_ts):
# GH#353
vals = Series([str(i) for i in range(5)])
result = "foo_" + vals
expected = vals.map(lambda x: "foo_" + x)
tm.assert_series_equal(result, expected)
frame = pd.DataFrame({"vals": vals})
result = "foo_" + frame
expected = pd.DataFrame({"vals": vals.map(lambda x: "foo_" + x)})
tm.assert_frame_equal(result, expected)
ts = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
# really raise this time
fix_now = fixed_now_ts.to_pydatetime()
msg = "|".join(
[
"unsupported operand type",
# wrong error message, see https://github.com/numpy/numpy/issues/18832
"Concatenation operation",
]
)
with pytest.raises(TypeError, match=msg):
fix_now + ts
with pytest.raises(TypeError, match=msg):
ts + fix_now
# TODO: This came from series.test.test_operators, needs cleanup
def test_datetime64_with_index(self):
# arithmetic integer ops with an index
ser = Series(np.random.default_rng(2).standard_normal(5))
expected = ser - ser.index.to_series()
result = ser - ser.index
tm.assert_series_equal(result, expected)
# GH#4629
# arithmetic datetime64 ops with an index
ser = Series(
date_range("20130101", periods=5),
index=date_range("20130101", periods=5),
)
expected = ser - ser.index.to_series()
result = ser - ser.index
tm.assert_series_equal(result, expected)
msg = "cannot subtract PeriodArray from DatetimeArray"
with pytest.raises(TypeError, match=msg):
# GH#18850
result = ser - ser.index.to_period()
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((5, 2)),
index=date_range("20130101", periods=5),
)
df["date"] = pd.Timestamp("20130102")
df["expected"] = df["date"] - df.index.to_series()
df["result"] = df["date"] - df.index
tm.assert_series_equal(df["result"], df["expected"], check_names=False)
# TODO: taken from tests.frame.test_operators, needs cleanup
def test_frame_operators(self, float_frame):
frame = float_frame
garbage = np.random.default_rng(2).random(4)
colSeries = Series(garbage, index=np.array(frame.columns))
idSum = frame + frame
seriesSum = frame + colSeries
for col, series in idSum.items():
for idx, val in series.items():
origVal = frame[col][idx] * 2
if not np.isnan(val):
assert val == origVal
else:
assert np.isnan(origVal)
for col, series in seriesSum.items():
for idx, val in series.items():
origVal = frame[col][idx] + colSeries[col]
if not np.isnan(val):
assert val == origVal
else:
assert np.isnan(origVal)
def test_frame_operators_col_align(self, float_frame):
frame2 = pd.DataFrame(float_frame, columns=["D", "C", "B", "A"])
added = frame2 + frame2
expected = frame2 * 2
tm.assert_frame_equal(added, expected)
def test_frame_operators_none_to_nan(self):
df = pd.DataFrame({"a": ["a", None, "b"]})
tm.assert_frame_equal(df + df, pd.DataFrame({"a": ["aa", np.nan, "bb"]}))
@pytest.mark.parametrize("dtype", ("float", "int64"))
def test_frame_operators_empty_like(self, dtype):
# Test for issue #10181
frames = [
pd.DataFrame(dtype=dtype),
pd.DataFrame(columns=["A"], dtype=dtype),
pd.DataFrame(index=[0], dtype=dtype),
]
for df in frames:
assert (df + df).equals(df)
tm.assert_frame_equal(df + df, df)
@pytest.mark.parametrize(
"func",
[lambda x: x * 2, lambda x: x[::2], lambda x: 5],
ids=["multiply", "slice", "constant"],
)
def test_series_operators_arithmetic(self, all_arithmetic_functions, func):
op = all_arithmetic_functions
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = func(series)
compare_op(series, other, op)
@pytest.mark.parametrize(
"func", [lambda x: x + 1, lambda x: 5], ids=["add", "constant"]
)
def test_series_operators_compare(self, comparison_op, func):
op = comparison_op
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = func(series)
compare_op(series, other, op)
@pytest.mark.parametrize(
"func",
[lambda x: x * 2, lambda x: x[::2], lambda x: 5],
ids=["multiply", "slice", "constant"],
)
def test_divmod(self, func):
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = func(series)
results = divmod(series, other)
if isinstance(other, abc.Iterable) and len(series) != len(other):
# if the lengths don't match, this is the test where we use
# `tser[::2]`. Pad every other value in `other_np` with nan.
other_np = []
for n in other:
other_np.append(n)
other_np.append(np.nan)
else:
other_np = other
other_np = np.asarray(other_np)
with np.errstate(all="ignore"):
expecteds = divmod(series.values, np.asarray(other_np))
for result, expected in zip(results, expecteds):
# check the values, name, and index separately
tm.assert_almost_equal(np.asarray(result), expected)
assert result.name == series.name
tm.assert_index_equal(result.index, series.index._with_freq(None))
def test_series_divmod_zero(self):
# Check that divmod uses pandas convention for division by zero,
# which does not match numpy.
# pandas convention has
# 1/0 == np.inf
# -1/0 == -np.inf
# 1/-0.0 == -np.inf
# -1/-0.0 == np.inf
tser = Series(
np.arange(1, 11, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
other = tser * 0
result = divmod(tser, other)
exp1 = Series([np.inf] * len(tser), index=tser.index, name="ts")
exp2 = Series([np.nan] * len(tser), index=tser.index, name="ts")
tm.assert_series_equal(result[0], exp1)
tm.assert_series_equal(result[1], exp2)
class TestUFuncCompat:
# TODO: add more dtypes
@pytest.mark.parametrize("holder", [Index, RangeIndex, Series])
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
def test_ufunc_compat(self, holder, dtype):
box = Series if holder is Series else Index
if holder is RangeIndex:
if dtype != np.int64:
pytest.skip(f"dtype {dtype} not relevant for RangeIndex")
idx = RangeIndex(0, 5, name="foo")
else:
idx = holder(np.arange(5, dtype=dtype), name="foo")
result = np.sin(idx)
expected = box(np.sin(np.arange(5, dtype=dtype)), name="foo")
tm.assert_equal(result, expected)
# TODO: add more dtypes
@pytest.mark.parametrize("holder", [Index, Series])
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
def test_ufunc_coercions(self, holder, dtype):
idx = holder([1, 2, 3, 4, 5], dtype=dtype, name="x")
box = Series if holder is Series else Index
result = np.sqrt(idx)
assert result.dtype == "f8" and isinstance(result, box)
exp = Index(np.sqrt(np.array([1, 2, 3, 4, 5], dtype=np.float64)), name="x")
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = np.divide(idx, 2.0)
assert result.dtype == "f8" and isinstance(result, box)
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
# _evaluate_numeric_binop
result = idx + 2.0
assert result.dtype == "f8" and isinstance(result, box)
exp = Index([3.0, 4.0, 5.0, 6.0, 7.0], dtype=np.float64, name="x")
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = idx - 2.0
assert result.dtype == "f8" and isinstance(result, box)
exp = Index([-1.0, 0.0, 1.0, 2.0, 3.0], dtype=np.float64, name="x")
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = idx * 1.0
assert result.dtype == "f8" and isinstance(result, box)
exp = Index([1.0, 2.0, 3.0, 4.0, 5.0], dtype=np.float64, name="x")
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
result = idx / 2.0
assert result.dtype == "f8" and isinstance(result, box)
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
exp = tm.box_expected(exp, box)
tm.assert_equal(result, exp)
# TODO: add more dtypes
@pytest.mark.parametrize("holder", [Index, Series])
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
def test_ufunc_multiple_return_values(self, holder, dtype):
obj = holder([1, 2, 3], dtype=dtype, name="x")
box = Series if holder is Series else Index
result = np.modf(obj)
assert isinstance(result, tuple)
exp1 = Index([0.0, 0.0, 0.0], dtype=np.float64, name="x")
exp2 = Index([1.0, 2.0, 3.0], dtype=np.float64, name="x")
tm.assert_equal(result[0], tm.box_expected(exp1, box))
tm.assert_equal(result[1], tm.box_expected(exp2, box))
def test_ufunc_at(self):
s = Series([0, 1, 2], index=[1, 2, 3], name="x")
np.add.at(s, [0, 2], 10)
expected = Series([10, 1, 12], index=[1, 2, 3], name="x")
tm.assert_series_equal(s, expected)
class TestObjectDtypeEquivalence:
# Tests that arithmetic operations match operations executed elementwise
@pytest.mark.parametrize("dtype", [None, object])
def test_numarr_with_dtype_add_nan(self, dtype, box_with_array):
box = box_with_array
ser = Series([1, 2, 3], dtype=dtype)
expected = Series([np.nan, np.nan, np.nan], dtype=dtype)
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = np.nan + ser
tm.assert_equal(result, expected)
result = ser + np.nan
tm.assert_equal(result, expected)
@pytest.mark.parametrize("dtype", [None, object])
def test_numarr_with_dtype_add_int(self, dtype, box_with_array):
box = box_with_array
ser = Series([1, 2, 3], dtype=dtype)
expected = Series([2, 3, 4], dtype=dtype)
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = 1 + ser
tm.assert_equal(result, expected)
result = ser + 1
tm.assert_equal(result, expected)
# TODO: moved from tests.series.test_operators; needs cleanup
@pytest.mark.parametrize(
"op",
[operator.add, operator.sub, operator.mul, operator.truediv, operator.floordiv],
)
def test_operators_reverse_object(self, op):
# GH#56
arr = Series(
np.random.default_rng(2).standard_normal(10),
index=np.arange(10),
dtype=object,
)
result = op(1.0, arr)
expected = op(1.0, arr.astype(float))
tm.assert_series_equal(result.astype(float), expected)
class TestNumericArithmeticUnsorted:
# Tests in this class have been moved from type-specific test modules
# but not yet sorted, parametrized, and de-duplicated
@pytest.mark.parametrize(
"op",
[
operator.add,
operator.sub,
operator.mul,
operator.floordiv,
operator.truediv,
],
)
@pytest.mark.parametrize(
"idx1",
[
RangeIndex(0, 10, 1),
RangeIndex(0, 20, 2),
RangeIndex(-10, 10, 2),
RangeIndex(5, -5, -1),
],
)
@pytest.mark.parametrize(
"idx2",
[
RangeIndex(0, 10, 1),
RangeIndex(0, 20, 2),
RangeIndex(-10, 10, 2),
RangeIndex(5, -5, -1),
],
)
def test_binops_index(self, op, idx1, idx2):
idx1 = idx1._rename("foo")
idx2 = idx2._rename("bar")
result = op(idx1, idx2)
expected = op(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
tm.assert_index_equal(result, expected, exact="equiv")
@pytest.mark.parametrize(
"op",
[
operator.add,
operator.sub,
operator.mul,
operator.floordiv,
operator.truediv,
],
)
@pytest.mark.parametrize(
"idx",
[
RangeIndex(0, 10, 1),
RangeIndex(0, 20, 2),
RangeIndex(-10, 10, 2),
RangeIndex(5, -5, -1),
],
)
@pytest.mark.parametrize("scalar", [-1, 1, 2])
def test_binops_index_scalar(self, op, idx, scalar):
result = op(idx, scalar)
expected = op(Index(idx.to_numpy()), scalar)
tm.assert_index_equal(result, expected, exact="equiv")
@pytest.mark.parametrize("idx1", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
@pytest.mark.parametrize("idx2", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
def test_binops_index_pow(self, idx1, idx2):
# numpy does not allow powers of negative integers so test separately
# https://github.com/numpy/numpy/pull/8127
idx1 = idx1._rename("foo")
idx2 = idx2._rename("bar")
result = pow(idx1, idx2)
expected = pow(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
tm.assert_index_equal(result, expected, exact="equiv")
@pytest.mark.parametrize("idx", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
@pytest.mark.parametrize("scalar", [1, 2])
def test_binops_index_scalar_pow(self, idx, scalar):
# numpy does not allow powers of negative integers so test separately
# https://github.com/numpy/numpy/pull/8127
result = pow(idx, scalar)
expected = pow(Index(idx.to_numpy()), scalar)
tm.assert_index_equal(result, expected, exact="equiv")
# TODO: divmod?
@pytest.mark.parametrize(
"op",
[
operator.add,
operator.sub,
operator.mul,
operator.floordiv,
operator.truediv,
operator.pow,
operator.mod,
],
)
def test_arithmetic_with_frame_or_series(self, op):
# check that we return NotImplemented when operating with Series
# or DataFrame
index = RangeIndex(5)
other = Series(np.random.default_rng(2).standard_normal(5))
expected = op(Series(index), other)
result = op(index, other)
tm.assert_series_equal(result, expected)
other = pd.DataFrame(np.random.default_rng(2).standard_normal((2, 5)))
expected = op(pd.DataFrame([index, index]), other)
result = op(index, other)
tm.assert_frame_equal(result, expected)
def test_numeric_compat2(self):
# validate that we are handling the RangeIndex overrides to numeric ops
# and returning RangeIndex where possible
idx = RangeIndex(0, 10, 2)
result = idx * 2
expected = RangeIndex(0, 20, 4)
tm.assert_index_equal(result, expected, exact=True)
result = idx + 2
expected = RangeIndex(2, 12, 2)
tm.assert_index_equal(result, expected, exact=True)
result = idx - 2
expected = RangeIndex(-2, 8, 2)
tm.assert_index_equal(result, expected, exact=True)
result = idx / 2
expected = RangeIndex(0, 5, 1).astype("float64")
tm.assert_index_equal(result, expected, exact=True)
result = idx / 4
expected = RangeIndex(0, 10, 2) / 4
tm.assert_index_equal(result, expected, exact=True)
result = idx // 1
expected = idx
tm.assert_index_equal(result, expected, exact=True)
# __mul__
result = idx * idx
expected = Index(idx.values * idx.values)
tm.assert_index_equal(result, expected, exact=True)
# __pow__
idx = RangeIndex(0, 1000, 2)
result = idx**2
expected = Index(idx._values) ** 2
tm.assert_index_equal(Index(result.values), expected, exact=True)
@pytest.mark.parametrize(
"idx, div, expected",
[
# TODO: add more dtypes
(RangeIndex(0, 1000, 2), 2, RangeIndex(0, 500, 1)),
(RangeIndex(-99, -201, -3), -3, RangeIndex(33, 67, 1)),
(
RangeIndex(0, 1000, 1),
2,
Index(RangeIndex(0, 1000, 1)._values) // 2,
),
(
RangeIndex(0, 100, 1),
2.0,
Index(RangeIndex(0, 100, 1)._values) // 2.0,
),
(RangeIndex(0), 50, RangeIndex(0)),
(RangeIndex(2, 4, 2), 3, RangeIndex(0, 1, 1)),
(RangeIndex(-5, -10, -6), 4, RangeIndex(-2, -1, 1)),
(RangeIndex(-100, -200, 3), 2, RangeIndex(0)),
],
)
def test_numeric_compat2_floordiv(self, idx, div, expected):
# __floordiv__
tm.assert_index_equal(idx // div, expected, exact=True)
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
@pytest.mark.parametrize("delta", [1, 0, -1])
def test_addsub_arithmetic(self, dtype, delta):
# GH#8142
delta = dtype(delta)
index = Index([10, 11, 12], dtype=dtype)
result = index + delta
expected = Index(index.values + delta, dtype=dtype)
tm.assert_index_equal(result, expected)
# this subtraction used to fail
result = index - delta
expected = Index(index.values - delta, dtype=dtype)
tm.assert_index_equal(result, expected)
tm.assert_index_equal(index + index, 2 * index)
tm.assert_index_equal(index - index, 0 * index)
assert not (index - index).empty
def test_pow_nan_with_zero(self, box_with_array):
left = Index([np.nan, np.nan, np.nan])
right = Index([0, 0, 0])
expected = Index([1.0, 1.0, 1.0])
left = tm.box_expected(left, box_with_array)
right = tm.box_expected(right, box_with_array)
expected = tm.box_expected(expected, box_with_array)
result = left**right
tm.assert_equal(result, expected)
def test_fill_value_inf_masking():
# GH #27464 make sure we mask 0/1 with Inf and not NaN
df = pd.DataFrame({"A": [0, 1, 2], "B": [1.1, None, 1.1]})
other = pd.DataFrame({"A": [1.1, 1.2, 1.3]}, index=[0, 2, 3])
result = df.rfloordiv(other, fill_value=1)
expected = pd.DataFrame(
{"A": [np.inf, 1.0, 0.0, 1.0], "B": [0.0, np.nan, 0.0, np.nan]}
)
tm.assert_frame_equal(result, expected)
def test_dataframe_div_silenced():
# GH#26793
pdf1 = pd.DataFrame(
{
"A": np.arange(10),
"B": [np.nan, 1, 2, 3, 4] * 2,
"C": [np.nan] * 10,
"D": np.arange(10),
},
index=list("abcdefghij"),
columns=list("ABCD"),
)
pdf2 = pd.DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
index=list("abcdefghjk"),
columns=list("ABCX"),
)
with tm.assert_produces_warning(None):
pdf1.div(pdf2, fill_value=0)
@pytest.mark.parametrize(
"data, expected_data",
[([0, 1, 2], [0, 2, 4])],
)
def test_integer_array_add_list_like(
box_pandas_1d_array, box_1d_array, data, expected_data
):
# GH22606 Verify operators with IntegerArray and list-likes
arr = array(data, dtype="Int64")
container = box_pandas_1d_array(arr)
left = container + box_1d_array(data)
right = box_1d_array(data) + container
if Series in [box_1d_array, box_pandas_1d_array]:
cls = Series
elif Index in [box_1d_array, box_pandas_1d_array]:
cls = Index
else:
cls = array
expected = cls(expected_data, dtype="Int64")
tm.assert_equal(left, expected)
tm.assert_equal(right, expected)
def test_sub_multiindex_swapped_levels():
# GH 9952
df = pd.DataFrame(
{"a": np.random.default_rng(2).standard_normal(6)},
index=pd.MultiIndex.from_product(
[["a", "b"], [0, 1, 2]], names=["levA", "levB"]
),
)
df2 = df.copy()
df2.index = df2.index.swaplevel(0, 1)
result = df - df2
expected = pd.DataFrame([0.0] * 6, columns=["a"], index=df.index)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("power", [1, 2, 5])
@pytest.mark.parametrize("string_size", [0, 1, 2, 5])
def test_empty_str_comparison(power, string_size):
# GH 37348
a = np.array(range(10**power))
right = pd.DataFrame(a, dtype=np.int64)
left = " " * string_size
result = right == left
expected = pd.DataFrame(np.zeros(right.shape, dtype=bool))
tm.assert_frame_equal(result, expected)
def test_series_add_sub_with_UInt64():
# GH 22023
series1 = Series([1, 2, 3])
series2 = Series([2, 1, 3], dtype="UInt64")
result = series1 + series2
expected = Series([3, 3, 6], dtype="Float64")
tm.assert_series_equal(result, expected)
result = series1 - series2
expected = Series([-1, 1, 0], dtype="Float64")
tm.assert_series_equal(result, expected)