Traktor/myenv/Lib/site-packages/pandas/tests/extension/test_numpy.py
2024-05-26 05:12:46 +02:00

427 lines
15 KiB
Python

"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
Note: we do not bother with base.BaseIndexTests because NumpyExtensionArray
will never be held in an Index.
"""
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import NumpyEADtype
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_object_dtype
from pandas.core.arrays.numpy_ import NumpyExtensionArray
from pandas.tests.extension import base
orig_assert_attr_equal = tm.assert_attr_equal
def _assert_attr_equal(attr: str, left, right, obj: str = "Attributes"):
"""
patch tm.assert_attr_equal so NumpyEADtype("object") is closed enough to
np.dtype("object")
"""
if attr == "dtype":
lattr = getattr(left, "dtype", None)
rattr = getattr(right, "dtype", None)
if isinstance(lattr, NumpyEADtype) and not isinstance(rattr, NumpyEADtype):
left = left.astype(lattr.numpy_dtype)
elif isinstance(rattr, NumpyEADtype) and not isinstance(lattr, NumpyEADtype):
right = right.astype(rattr.numpy_dtype)
orig_assert_attr_equal(attr, left, right, obj)
@pytest.fixture(params=["float", "object"])
def dtype(request):
return NumpyEADtype(np.dtype(request.param))
@pytest.fixture
def allow_in_pandas(monkeypatch):
"""
A monkeypatch to tells pandas to let us in.
By default, passing a NumpyExtensionArray to an index / series / frame
constructor will unbox that NumpyExtensionArray to an ndarray, and treat
it as a non-EA column. We don't want people using EAs without
reason.
The mechanism for this is a check against ABCNumpyExtensionArray
in each constructor.
But, for testing, we need to allow them in pandas. So we patch
the _typ of NumpyExtensionArray, so that we evade the ABCNumpyExtensionArray
check.
"""
with monkeypatch.context() as m:
m.setattr(NumpyExtensionArray, "_typ", "extension")
m.setattr(tm.asserters, "assert_attr_equal", _assert_attr_equal)
yield
@pytest.fixture
def data(allow_in_pandas, dtype):
if dtype.numpy_dtype == "object":
return pd.Series([(i,) for i in range(100)]).array
return NumpyExtensionArray(np.arange(1, 101, dtype=dtype._dtype))
@pytest.fixture
def data_missing(allow_in_pandas, dtype):
if dtype.numpy_dtype == "object":
return NumpyExtensionArray(np.array([np.nan, (1,)], dtype=object))
return NumpyExtensionArray(np.array([np.nan, 1.0]))
@pytest.fixture
def na_cmp():
def cmp(a, b):
return np.isnan(a) and np.isnan(b)
return cmp
@pytest.fixture
def data_for_sorting(allow_in_pandas, dtype):
"""Length-3 array with a known sort order.
This should be three items [B, C, A] with
A < B < C
"""
if dtype.numpy_dtype == "object":
# Use an empty tuple for first element, then remove,
# to disable np.array's shape inference.
return NumpyExtensionArray(np.array([(), (2,), (3,), (1,)], dtype=object)[1:])
return NumpyExtensionArray(np.array([1, 2, 0]))
@pytest.fixture
def data_missing_for_sorting(allow_in_pandas, dtype):
"""Length-3 array with a known sort order.
This should be three items [B, NA, A] with
A < B and NA missing.
"""
if dtype.numpy_dtype == "object":
return NumpyExtensionArray(np.array([(1,), np.nan, (0,)], dtype=object))
return NumpyExtensionArray(np.array([1, np.nan, 0]))
@pytest.fixture
def data_for_grouping(allow_in_pandas, dtype):
"""Data for factorization, grouping, and unique tests.
Expected to be like [B, B, NA, NA, A, A, B, C]
Where A < B < C and NA is missing
"""
if dtype.numpy_dtype == "object":
a, b, c = (1,), (2,), (3,)
else:
a, b, c = np.arange(3)
return NumpyExtensionArray(
np.array([b, b, np.nan, np.nan, a, a, b, c], dtype=dtype.numpy_dtype)
)
@pytest.fixture
def data_for_twos(dtype):
if dtype.kind == "O":
pytest.skip(f"{dtype} is not a numeric dtype")
arr = np.ones(100) * 2
return NumpyExtensionArray._from_sequence(arr, dtype=dtype)
@pytest.fixture
def skip_numpy_object(dtype, request):
"""
Tests for NumpyExtensionArray with nested data. Users typically won't create
these objects via `pd.array`, but they can show up through `.array`
on a Series with nested data. Many of the base tests fail, as they aren't
appropriate for nested data.
This fixture allows these tests to be skipped when used as a usefixtures
marker to either an individual test or a test class.
"""
if dtype == "object":
mark = pytest.mark.xfail(reason="Fails for object dtype")
request.applymarker(mark)
skip_nested = pytest.mark.usefixtures("skip_numpy_object")
class TestNumpyExtensionArray(base.ExtensionTests):
@pytest.mark.skip(reason="We don't register our dtype")
# We don't want to register. This test should probably be split in two.
def test_from_dtype(self, data):
pass
@skip_nested
def test_series_constructor_scalar_with_index(self, data, dtype):
# ValueError: Length of passed values is 1, index implies 3.
super().test_series_constructor_scalar_with_index(data, dtype)
def test_check_dtype(self, data, request, using_infer_string):
if data.dtype.numpy_dtype == "object":
request.applymarker(
pytest.mark.xfail(
reason=f"NumpyExtensionArray expectedly clashes with a "
f"NumPy name: {data.dtype.numpy_dtype}"
)
)
super().test_check_dtype(data)
def test_is_not_object_type(self, dtype, request):
if dtype.numpy_dtype == "object":
# Different from BaseDtypeTests.test_is_not_object_type
# because NumpyEADtype(object) is an object type
assert is_object_dtype(dtype)
else:
super().test_is_not_object_type(dtype)
@skip_nested
def test_getitem_scalar(self, data):
# AssertionError
super().test_getitem_scalar(data)
@skip_nested
def test_shift_fill_value(self, data):
# np.array shape inference. Shift implementation fails.
super().test_shift_fill_value(data)
@skip_nested
def test_fillna_copy_frame(self, data_missing):
# The "scalar" for this array isn't a scalar.
super().test_fillna_copy_frame(data_missing)
@skip_nested
def test_fillna_copy_series(self, data_missing):
# The "scalar" for this array isn't a scalar.
super().test_fillna_copy_series(data_missing)
@skip_nested
def test_searchsorted(self, data_for_sorting, as_series):
# TODO: NumpyExtensionArray.searchsorted calls ndarray.searchsorted which
# isn't quite what we want in nested data cases. Instead we need to
# adapt something like libindex._bin_search.
super().test_searchsorted(data_for_sorting, as_series)
@pytest.mark.xfail(reason="NumpyExtensionArray.diff may fail on dtype")
def test_diff(self, data, periods):
return super().test_diff(data, periods)
def test_insert(self, data, request):
if data.dtype.numpy_dtype == object:
mark = pytest.mark.xfail(reason="Dimension mismatch in np.concatenate")
request.applymarker(mark)
super().test_insert(data)
@skip_nested
def test_insert_invalid(self, data, invalid_scalar):
# NumpyExtensionArray[object] can hold anything, so skip
super().test_insert_invalid(data, invalid_scalar)
divmod_exc = None
series_scalar_exc = None
frame_scalar_exc = None
series_array_exc = None
def test_divmod(self, data):
divmod_exc = None
if data.dtype.kind == "O":
divmod_exc = TypeError
self.divmod_exc = divmod_exc
super().test_divmod(data)
def test_divmod_series_array(self, data):
ser = pd.Series(data)
exc = None
if data.dtype.kind == "O":
exc = TypeError
self.divmod_exc = exc
self._check_divmod_op(ser, divmod, data)
def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request):
opname = all_arithmetic_operators
series_scalar_exc = None
if data.dtype.numpy_dtype == object:
if opname in ["__mul__", "__rmul__"]:
mark = pytest.mark.xfail(
reason="the Series.combine step raises but not the Series method."
)
request.node.add_marker(mark)
series_scalar_exc = TypeError
self.series_scalar_exc = series_scalar_exc
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
opname = all_arithmetic_operators
series_array_exc = None
if data.dtype.numpy_dtype == object and opname not in ["__add__", "__radd__"]:
series_array_exc = TypeError
self.series_array_exc = series_array_exc
super().test_arith_series_with_array(data, all_arithmetic_operators)
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
opname = all_arithmetic_operators
frame_scalar_exc = None
if data.dtype.numpy_dtype == object:
if opname in ["__mul__", "__rmul__"]:
mark = pytest.mark.xfail(
reason="the Series.combine step raises but not the Series method."
)
request.node.add_marker(mark)
frame_scalar_exc = TypeError
self.frame_scalar_exc = frame_scalar_exc
super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
if ser.dtype.kind == "O":
return op_name in ["sum", "min", "max", "any", "all"]
return True
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
res_op = getattr(ser, op_name)
# avoid coercing int -> float. Just cast to the actual numpy type.
# error: Item "ExtensionDtype" of "dtype[Any] | ExtensionDtype" has
# no attribute "numpy_dtype"
cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr]
alt = ser.astype(cmp_dtype)
exp_op = getattr(alt, op_name)
if op_name == "count":
result = res_op()
expected = exp_op()
else:
result = res_op(skipna=skipna)
expected = exp_op(skipna=skipna)
tm.assert_almost_equal(result, expected)
@pytest.mark.skip("TODO: tests not written yet")
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_frame(self, data, all_numeric_reductions, skipna):
pass
@skip_nested
def test_fillna_series(self, data_missing):
# Non-scalar "scalar" values.
super().test_fillna_series(data_missing)
@skip_nested
def test_fillna_frame(self, data_missing):
# Non-scalar "scalar" values.
super().test_fillna_frame(data_missing)
@skip_nested
def test_setitem_invalid(self, data, invalid_scalar):
# object dtype can hold anything, so doesn't raise
super().test_setitem_invalid(data, invalid_scalar)
@skip_nested
def test_setitem_sequence_broadcasts(self, data, box_in_series):
# ValueError: cannot set using a list-like indexer with a different
# length than the value
super().test_setitem_sequence_broadcasts(data, box_in_series)
@skip_nested
@pytest.mark.parametrize("setter", ["loc", None])
def test_setitem_mask_broadcast(self, data, setter):
# ValueError: cannot set using a list-like indexer with a different
# length than the value
super().test_setitem_mask_broadcast(data, setter)
@skip_nested
def test_setitem_scalar_key_sequence_raise(self, data):
# Failed: DID NOT RAISE <class 'ValueError'>
super().test_setitem_scalar_key_sequence_raise(data)
# TODO: there is some issue with NumpyExtensionArray, therefore,
# skip the setitem test for now, and fix it later (GH 31446)
@skip_nested
@pytest.mark.parametrize(
"mask",
[
np.array([True, True, True, False, False]),
pd.array([True, True, True, False, False], dtype="boolean"),
],
ids=["numpy-array", "boolean-array"],
)
def test_setitem_mask(self, data, mask, box_in_series):
super().test_setitem_mask(data, mask, box_in_series)
@skip_nested
@pytest.mark.parametrize(
"idx",
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
ids=["list", "integer-array", "numpy-array"],
)
def test_setitem_integer_array(self, data, idx, box_in_series):
super().test_setitem_integer_array(data, idx, box_in_series)
@pytest.mark.parametrize(
"idx, box_in_series",
[
([0, 1, 2, pd.NA], False),
pytest.param([0, 1, 2, pd.NA], True, marks=pytest.mark.xfail),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
],
ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
)
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
super().test_setitem_integer_with_missing_raises(data, idx, box_in_series)
@skip_nested
def test_setitem_slice(self, data, box_in_series):
super().test_setitem_slice(data, box_in_series)
@skip_nested
def test_setitem_loc_iloc_slice(self, data):
super().test_setitem_loc_iloc_slice(data)
def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
# https://github.com/pandas-dev/pandas/issues/32395
df = expected = pd.DataFrame({"data": pd.Series(data)})
result = pd.DataFrame(index=df.index)
# because result has object dtype, the attempt to do setting inplace
# is successful, and object dtype is retained
key = full_indexer(df)
result.loc[key, "data"] = df["data"]
# base class method has expected = df; NumpyExtensionArray behaves oddly because
# we patch _typ for these tests.
if data.dtype.numpy_dtype != object:
if not isinstance(key, slice) or key != slice(None):
expected = pd.DataFrame({"data": data.to_numpy()})
tm.assert_frame_equal(result, expected, check_column_type=False)
@pytest.mark.xfail(reason="NumpyEADtype is unpacked")
def test_index_from_listlike_with_dtype(self, data):
super().test_index_from_listlike_with_dtype(data)
@skip_nested
@pytest.mark.parametrize("engine", ["c", "python"])
def test_EA_types(self, engine, data, request):
super().test_EA_types(engine, data, request)
class Test2DCompat(base.NDArrayBacked2DTests):
pass