Traktor/myenv/Lib/site-packages/pandas/tests/io/conftest.py
2024-05-26 05:12:46 +02:00

243 lines
6.3 KiB
Python

import shlex
import subprocess
import time
import uuid
import pytest
from pandas.compat import (
is_ci_environment,
is_platform_arm,
is_platform_mac,
is_platform_windows,
)
import pandas.util._test_decorators as td
import pandas.io.common as icom
from pandas.io.parsers import read_csv
@pytest.fixture
def compression_to_extension():
return {value: key for key, value in icom.extension_to_compression.items()}
@pytest.fixture
def tips_file(datapath):
"""Path to the tips dataset"""
return datapath("io", "data", "csv", "tips.csv")
@pytest.fixture
def jsonl_file(datapath):
"""Path to a JSONL dataset"""
return datapath("io", "parser", "data", "items.jsonl")
@pytest.fixture
def salaries_table(datapath):
"""DataFrame with the salaries dataset"""
return read_csv(datapath("io", "parser", "data", "salaries.csv"), sep="\t")
@pytest.fixture
def feather_file(datapath):
return datapath("io", "data", "feather", "feather-0_3_1.feather")
@pytest.fixture
def xml_file(datapath):
return datapath("io", "data", "xml", "books.xml")
@pytest.fixture
def s3_base(worker_id, monkeypatch):
"""
Fixture for mocking S3 interaction.
Sets up moto server in separate process locally
Return url for motoserver/moto CI service
"""
pytest.importorskip("s3fs")
pytest.importorskip("boto3")
# temporary workaround as moto fails for botocore >= 1.11 otherwise,
# see https://github.com/spulec/moto/issues/1924 & 1952
monkeypatch.setenv("AWS_ACCESS_KEY_ID", "foobar_key")
monkeypatch.setenv("AWS_SECRET_ACCESS_KEY", "foobar_secret")
if is_ci_environment():
if is_platform_arm() or is_platform_mac() or is_platform_windows():
# NOT RUN on Windows/macOS/ARM, only Ubuntu
# - subprocess in CI can cause timeouts
# - GitHub Actions do not support
# container services for the above OSs
# - CircleCI will probably hit the Docker rate pull limit
pytest.skip(
"S3 tests do not have a corresponding service in "
"Windows, macOS or ARM platforms"
)
else:
# set in .github/workflows/unit-tests.yml
yield "http://localhost:5000"
else:
requests = pytest.importorskip("requests")
pytest.importorskip("moto")
pytest.importorskip("flask") # server mode needs flask too
# Launching moto in server mode, i.e., as a separate process
# with an S3 endpoint on localhost
worker_id = "5" if worker_id == "master" else worker_id.lstrip("gw")
endpoint_port = f"555{worker_id}"
endpoint_uri = f"http://127.0.0.1:{endpoint_port}/"
# pipe to null to avoid logging in terminal
with subprocess.Popen(
shlex.split(f"moto_server s3 -p {endpoint_port}"),
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
) as proc:
timeout = 5
while timeout > 0:
try:
# OK to go once server is accepting connections
r = requests.get(endpoint_uri)
if r.ok:
break
except Exception:
pass
timeout -= 0.1
time.sleep(0.1)
yield endpoint_uri
proc.terminate()
@pytest.fixture
def s3so(s3_base):
return {"client_kwargs": {"endpoint_url": s3_base}}
@pytest.fixture
def s3_resource(s3_base):
import boto3
s3 = boto3.resource("s3", endpoint_url=s3_base)
return s3
@pytest.fixture
def s3_public_bucket(s3_resource):
bucket = s3_resource.Bucket(f"pandas-test-{uuid.uuid4()}")
bucket.create()
yield bucket
bucket.objects.delete()
bucket.delete()
@pytest.fixture
def s3_public_bucket_with_data(
s3_public_bucket, tips_file, jsonl_file, feather_file, xml_file
):
"""
The following datasets
are loaded.
- tips.csv
- tips.csv.gz
- tips.csv.bz2
- items.jsonl
"""
test_s3_files = [
("tips#1.csv", tips_file),
("tips.csv", tips_file),
("tips.csv.gz", tips_file + ".gz"),
("tips.csv.bz2", tips_file + ".bz2"),
("items.jsonl", jsonl_file),
("simple_dataset.feather", feather_file),
("books.xml", xml_file),
]
for s3_key, file_name in test_s3_files:
with open(file_name, "rb") as f:
s3_public_bucket.put_object(Key=s3_key, Body=f)
return s3_public_bucket
@pytest.fixture
def s3_private_bucket(s3_resource):
bucket = s3_resource.Bucket(f"cant_get_it-{uuid.uuid4()}")
bucket.create(ACL="private")
yield bucket
bucket.objects.delete()
bucket.delete()
@pytest.fixture
def s3_private_bucket_with_data(
s3_private_bucket, tips_file, jsonl_file, feather_file, xml_file
):
"""
The following datasets
are loaded.
- tips.csv
- tips.csv.gz
- tips.csv.bz2
- items.jsonl
"""
test_s3_files = [
("tips#1.csv", tips_file),
("tips.csv", tips_file),
("tips.csv.gz", tips_file + ".gz"),
("tips.csv.bz2", tips_file + ".bz2"),
("items.jsonl", jsonl_file),
("simple_dataset.feather", feather_file),
("books.xml", xml_file),
]
for s3_key, file_name in test_s3_files:
with open(file_name, "rb") as f:
s3_private_bucket.put_object(Key=s3_key, Body=f)
return s3_private_bucket
_compression_formats_params = [
(".no_compress", None),
("", None),
(".gz", "gzip"),
(".GZ", "gzip"),
(".bz2", "bz2"),
(".BZ2", "bz2"),
(".zip", "zip"),
(".ZIP", "zip"),
(".xz", "xz"),
(".XZ", "xz"),
pytest.param((".zst", "zstd"), marks=td.skip_if_no("zstandard")),
pytest.param((".ZST", "zstd"), marks=td.skip_if_no("zstandard")),
]
@pytest.fixture(params=_compression_formats_params[1:])
def compression_format(request):
return request.param
@pytest.fixture(params=_compression_formats_params)
def compression_ext(request):
return request.param[0]
@pytest.fixture(
params=[
"python",
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
]
)
def string_storage(request):
"""
Parametrized fixture for pd.options.mode.string_storage.
* 'python'
* 'pyarrow'
"""
return request.param