Traktor/myenv/Lib/site-packages/pandas/tests/series/test_missing.py
2024-05-26 05:12:46 +02:00

106 lines
3.2 KiB
Python

from datetime import timedelta
import numpy as np
import pytest
from pandas._libs import iNaT
import pandas as pd
from pandas import (
Categorical,
Index,
NaT,
Series,
isna,
)
import pandas._testing as tm
class TestSeriesMissingData:
def test_categorical_nan_handling(self):
# NaNs are represented as -1 in labels
s = Series(Categorical(["a", "b", np.nan, "a"]))
tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
tm.assert_numpy_array_equal(
s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8)
)
def test_isna_for_inf(self):
s = Series(["a", np.inf, np.nan, pd.NA, 1.0])
msg = "use_inf_as_na option is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
with pd.option_context("mode.use_inf_as_na", True):
r = s.isna()
dr = s.dropna()
e = Series([False, True, True, True, False])
de = Series(["a", 1.0], index=[0, 4])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
def test_timedelta64_nan(self):
td = Series([timedelta(days=i) for i in range(10)])
# nan ops on timedeltas
td1 = td.copy()
td1[0] = np.nan
assert isna(td1[0])
assert td1[0]._value == iNaT
td1[0] = td[0]
assert not isna(td1[0])
# GH#16674 iNaT is treated as an integer when given by the user
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
td1[1] = iNaT
assert not isna(td1[1])
assert td1.dtype == np.object_
assert td1[1] == iNaT
td1[1] = td[1]
assert not isna(td1[1])
td1[2] = NaT
assert isna(td1[2])
assert td1[2]._value == iNaT
td1[2] = td[2]
assert not isna(td1[2])
# boolean setting
# GH#2899 boolean setting
td3 = np.timedelta64(timedelta(days=3))
td7 = np.timedelta64(timedelta(days=7))
td[(td > td3) & (td < td7)] = np.nan
assert isna(td).sum() == 3
@pytest.mark.xfail(
reason="Chained inequality raises when trying to define 'selector'"
)
def test_logical_range_select(self, datetime_series):
# NumPy limitation =(
# https://github.com/pandas-dev/pandas/commit/9030dc021f07c76809848925cb34828f6c8484f3
selector = -0.5 <= datetime_series <= 0.5
expected = (datetime_series >= -0.5) & (datetime_series <= 0.5)
tm.assert_series_equal(selector, expected)
def test_valid(self, datetime_series):
ts = datetime_series.copy()
ts.index = ts.index._with_freq(None)
ts[::2] = np.nan
result = ts.dropna()
assert len(result) == ts.count()
tm.assert_series_equal(result, ts[1::2])
tm.assert_series_equal(result, ts[pd.notna(ts)])
def test_hasnans_uncached_for_series():
# GH#19700
# set float64 dtype to avoid upcast when setting nan
idx = Index([0, 1], dtype="float64")
assert idx.hasnans is False
assert "hasnans" in idx._cache
ser = idx.to_series()
assert ser.hasnans is False
assert not hasattr(ser, "_cache")
ser.iloc[-1] = np.nan
assert ser.hasnans is True