Traktor/myenv/Lib/site-packages/pandas/tests/window/test_expanding.py
2024-05-26 05:12:46 +02:00

724 lines
24 KiB
Python

import numpy as np
import pytest
from pandas import (
DataFrame,
DatetimeIndex,
Index,
MultiIndex,
Series,
isna,
notna,
)
import pandas._testing as tm
def test_doc_string():
df = DataFrame({"B": [0, 1, 2, np.nan, 4]})
df
df.expanding(2).sum()
def test_constructor(frame_or_series):
# GH 12669
c = frame_or_series(range(5)).expanding
# valid
c(min_periods=1)
@pytest.mark.parametrize("w", [2.0, "foo", np.array([2])])
def test_constructor_invalid(frame_or_series, w):
# not valid
c = frame_or_series(range(5)).expanding
msg = "min_periods must be an integer"
with pytest.raises(ValueError, match=msg):
c(min_periods=w)
@pytest.mark.parametrize(
"expander",
[
1,
pytest.param(
"ls",
marks=pytest.mark.xfail(
reason="GH#16425 expanding with offset not supported"
),
),
],
)
def test_empty_df_expanding(expander):
# GH 15819 Verifies that datetime and integer expanding windows can be
# applied to empty DataFrames
expected = DataFrame()
result = DataFrame().expanding(expander).sum()
tm.assert_frame_equal(result, expected)
# Verifies that datetime and integer expanding windows can be applied
# to empty DataFrames with datetime index
expected = DataFrame(index=DatetimeIndex([]))
result = DataFrame(index=DatetimeIndex([])).expanding(expander).sum()
tm.assert_frame_equal(result, expected)
def test_missing_minp_zero():
# https://github.com/pandas-dev/pandas/pull/18921
# minp=0
x = Series([np.nan])
result = x.expanding(min_periods=0).sum()
expected = Series([0.0])
tm.assert_series_equal(result, expected)
# minp=1
result = x.expanding(min_periods=1).sum()
expected = Series([np.nan])
tm.assert_series_equal(result, expected)
def test_expanding_axis(axis_frame):
# see gh-23372.
df = DataFrame(np.ones((10, 20)))
axis = df._get_axis_number(axis_frame)
if axis == 0:
msg = "The 'axis' keyword in DataFrame.expanding is deprecated"
expected = DataFrame(
{i: [np.nan] * 2 + [float(j) for j in range(3, 11)] for i in range(20)}
)
else:
# axis == 1
msg = "Support for axis=1 in DataFrame.expanding is deprecated"
expected = DataFrame([[np.nan] * 2 + [float(i) for i in range(3, 21)]] * 10)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.expanding(3, axis=axis_frame).sum()
tm.assert_frame_equal(result, expected)
def test_expanding_count_with_min_periods(frame_or_series):
# GH 26996
result = frame_or_series(range(5)).expanding(min_periods=3).count()
expected = frame_or_series([np.nan, np.nan, 3.0, 4.0, 5.0])
tm.assert_equal(result, expected)
def test_expanding_count_default_min_periods_with_null_values(frame_or_series):
# GH 26996
values = [1, 2, 3, np.nan, 4, 5, 6]
expected_counts = [1.0, 2.0, 3.0, 3.0, 4.0, 5.0, 6.0]
result = frame_or_series(values).expanding().count()
expected = frame_or_series(expected_counts)
tm.assert_equal(result, expected)
def test_expanding_count_with_min_periods_exceeding_series_length(frame_or_series):
# GH 25857
result = frame_or_series(range(5)).expanding(min_periods=6).count()
expected = frame_or_series([np.nan, np.nan, np.nan, np.nan, np.nan])
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"df,expected,min_periods",
[
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
],
3,
),
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
],
2,
),
(
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
[
({"A": [1], "B": [4]}, [0]),
({"A": [1, 2], "B": [4, 5]}, [0, 1]),
({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
],
1,
),
(DataFrame({"A": [1], "B": [4]}), [], 2),
(DataFrame(), [({}, [])], 1),
(
DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}),
[
({"A": [1.0], "B": [np.nan]}, [0]),
({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]),
({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]),
],
3,
),
(
DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}),
[
({"A": [1.0], "B": [np.nan]}, [0]),
({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]),
({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]),
],
2,
),
(
DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}),
[
({"A": [1.0], "B": [np.nan]}, [0]),
({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]),
({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]),
],
1,
),
],
)
def test_iter_expanding_dataframe(df, expected, min_periods):
# GH 11704
expected = [DataFrame(values, index=index) for (values, index) in expected]
for expected, actual in zip(expected, df.expanding(min_periods)):
tm.assert_frame_equal(actual, expected)
@pytest.mark.parametrize(
"ser,expected,min_periods",
[
(Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 3),
(Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 2),
(Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 1),
(Series([1, 2]), [([1], [0]), ([1, 2], [0, 1])], 2),
(Series([np.nan, 2]), [([np.nan], [0]), ([np.nan, 2], [0, 1])], 2),
(Series([], dtype="int64"), [], 2),
],
)
def test_iter_expanding_series(ser, expected, min_periods):
# GH 11704
expected = [Series(values, index=index) for (values, index) in expected]
for expected, actual in zip(expected, ser.expanding(min_periods)):
tm.assert_series_equal(actual, expected)
def test_center_invalid():
# GH 20647
df = DataFrame()
with pytest.raises(TypeError, match=".* got an unexpected keyword"):
df.expanding(center=True)
def test_expanding_sem(frame_or_series):
# GH: 26476
obj = frame_or_series([0, 1, 2])
result = obj.expanding().sem()
if isinstance(result, DataFrame):
result = Series(result[0].values)
expected = Series([np.nan] + [0.707107] * 2)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["skew", "kurt"])
def test_expanding_skew_kurt_numerical_stability(method):
# GH: 6929
s = Series(np.random.default_rng(2).random(10))
expected = getattr(s.expanding(3), method)()
s = s + 5000
result = getattr(s.expanding(3), method)()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("window", [1, 3, 10, 20])
@pytest.mark.parametrize("method", ["min", "max", "average"])
@pytest.mark.parametrize("pct", [True, False])
@pytest.mark.parametrize("ascending", [True, False])
@pytest.mark.parametrize("test_data", ["default", "duplicates", "nans"])
def test_rank(window, method, pct, ascending, test_data):
length = 20
if test_data == "default":
ser = Series(data=np.random.default_rng(2).random(length))
elif test_data == "duplicates":
ser = Series(data=np.random.default_rng(2).choice(3, length))
elif test_data == "nans":
ser = Series(
data=np.random.default_rng(2).choice(
[1.0, 0.25, 0.75, np.nan, np.inf, -np.inf], length
)
)
expected = ser.expanding(window).apply(
lambda x: x.rank(method=method, pct=pct, ascending=ascending).iloc[-1]
)
result = ser.expanding(window).rank(method=method, pct=pct, ascending=ascending)
tm.assert_series_equal(result, expected)
def test_expanding_corr(series):
A = series.dropna()
B = (A + np.random.default_rng(2).standard_normal(len(A)))[:-5]
result = A.expanding().corr(B)
rolling_result = A.rolling(window=len(A), min_periods=1).corr(B)
tm.assert_almost_equal(rolling_result, result)
def test_expanding_count(series):
result = series.expanding(min_periods=0).count()
tm.assert_almost_equal(
result, series.rolling(window=len(series), min_periods=0).count()
)
def test_expanding_quantile(series):
result = series.expanding().quantile(0.5)
rolling_result = series.rolling(window=len(series), min_periods=1).quantile(0.5)
tm.assert_almost_equal(result, rolling_result)
def test_expanding_cov(series):
A = series
B = (A + np.random.default_rng(2).standard_normal(len(A)))[:-5]
result = A.expanding().cov(B)
rolling_result = A.rolling(window=len(A), min_periods=1).cov(B)
tm.assert_almost_equal(rolling_result, result)
def test_expanding_cov_pairwise(frame):
result = frame.expanding().cov()
rolling_result = frame.rolling(window=len(frame), min_periods=1).cov()
tm.assert_frame_equal(result, rolling_result)
def test_expanding_corr_pairwise(frame):
result = frame.expanding().corr()
rolling_result = frame.rolling(window=len(frame), min_periods=1).corr()
tm.assert_frame_equal(result, rolling_result)
@pytest.mark.parametrize(
"func,static_comp",
[
("sum", np.sum),
("mean", lambda x: np.mean(x, axis=0)),
("max", lambda x: np.max(x, axis=0)),
("min", lambda x: np.min(x, axis=0)),
],
ids=["sum", "mean", "max", "min"],
)
def test_expanding_func(func, static_comp, frame_or_series):
data = frame_or_series(np.array(list(range(10)) + [np.nan] * 10))
msg = "The 'axis' keyword in (Series|DataFrame).expanding is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
obj = data.expanding(min_periods=1, axis=0)
result = getattr(obj, func)()
assert isinstance(result, frame_or_series)
msg = "The behavior of DataFrame.sum with axis=None is deprecated"
warn = None
if frame_or_series is DataFrame and static_comp is np.sum:
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
expected = static_comp(data[:11])
if frame_or_series is Series:
tm.assert_almost_equal(result[10], expected)
else:
tm.assert_series_equal(result.iloc[10], expected, check_names=False)
@pytest.mark.parametrize(
"func,static_comp",
[("sum", np.sum), ("mean", np.mean), ("max", np.max), ("min", np.min)],
ids=["sum", "mean", "max", "min"],
)
def test_expanding_min_periods(func, static_comp):
ser = Series(np.random.default_rng(2).standard_normal(50))
msg = "The 'axis' keyword in Series.expanding is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = getattr(ser.expanding(min_periods=30, axis=0), func)()
assert result[:29].isna().all()
tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
# min_periods is working correctly
with tm.assert_produces_warning(FutureWarning, match=msg):
result = getattr(ser.expanding(min_periods=15, axis=0), func)()
assert isna(result.iloc[13])
assert notna(result.iloc[14])
ser2 = Series(np.random.default_rng(2).standard_normal(20))
with tm.assert_produces_warning(FutureWarning, match=msg):
result = getattr(ser2.expanding(min_periods=5, axis=0), func)()
assert isna(result[3])
assert notna(result[4])
# min_periods=0
with tm.assert_produces_warning(FutureWarning, match=msg):
result0 = getattr(ser.expanding(min_periods=0, axis=0), func)()
with tm.assert_produces_warning(FutureWarning, match=msg):
result1 = getattr(ser.expanding(min_periods=1, axis=0), func)()
tm.assert_almost_equal(result0, result1)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = getattr(ser.expanding(min_periods=1, axis=0), func)()
tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
def test_expanding_apply(engine_and_raw, frame_or_series):
engine, raw = engine_and_raw
data = frame_or_series(np.array(list(range(10)) + [np.nan] * 10))
result = data.expanding(min_periods=1).apply(
lambda x: x.mean(), raw=raw, engine=engine
)
assert isinstance(result, frame_or_series)
if frame_or_series is Series:
tm.assert_almost_equal(result[9], np.mean(data[:11], axis=0))
else:
tm.assert_series_equal(
result.iloc[9], np.mean(data[:11], axis=0), check_names=False
)
def test_expanding_min_periods_apply(engine_and_raw):
engine, raw = engine_and_raw
ser = Series(np.random.default_rng(2).standard_normal(50))
result = ser.expanding(min_periods=30).apply(
lambda x: x.mean(), raw=raw, engine=engine
)
assert result[:29].isna().all()
tm.assert_almost_equal(result.iloc[-1], np.mean(ser[:50]))
# min_periods is working correctly
result = ser.expanding(min_periods=15).apply(
lambda x: x.mean(), raw=raw, engine=engine
)
assert isna(result.iloc[13])
assert notna(result.iloc[14])
ser2 = Series(np.random.default_rng(2).standard_normal(20))
result = ser2.expanding(min_periods=5).apply(
lambda x: x.mean(), raw=raw, engine=engine
)
assert isna(result[3])
assert notna(result[4])
# min_periods=0
result0 = ser.expanding(min_periods=0).apply(
lambda x: x.mean(), raw=raw, engine=engine
)
result1 = ser.expanding(min_periods=1).apply(
lambda x: x.mean(), raw=raw, engine=engine
)
tm.assert_almost_equal(result0, result1)
result = ser.expanding(min_periods=1).apply(
lambda x: x.mean(), raw=raw, engine=engine
)
tm.assert_almost_equal(result.iloc[-1], np.mean(ser[:50]))
@pytest.mark.parametrize(
"f",
[
lambda x: (x.expanding(min_periods=5).cov(x, pairwise=True)),
lambda x: (x.expanding(min_periods=5).corr(x, pairwise=True)),
],
)
def test_moment_functions_zero_length_pairwise(f):
df1 = DataFrame()
df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar"))
df2["a"] = df2["a"].astype("float64")
df1_expected = DataFrame(index=MultiIndex.from_product([df1.index, df1.columns]))
df2_expected = DataFrame(
index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]),
columns=Index(["a"], name="foo"),
dtype="float64",
)
df1_result = f(df1)
tm.assert_frame_equal(df1_result, df1_expected)
df2_result = f(df2)
tm.assert_frame_equal(df2_result, df2_expected)
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().count(),
lambda x: x.expanding(min_periods=5).cov(x, pairwise=False),
lambda x: x.expanding(min_periods=5).corr(x, pairwise=False),
lambda x: x.expanding(min_periods=5).max(),
lambda x: x.expanding(min_periods=5).min(),
lambda x: x.expanding(min_periods=5).sum(),
lambda x: x.expanding(min_periods=5).mean(),
lambda x: x.expanding(min_periods=5).std(),
lambda x: x.expanding(min_periods=5).var(),
lambda x: x.expanding(min_periods=5).skew(),
lambda x: x.expanding(min_periods=5).kurt(),
lambda x: x.expanding(min_periods=5).quantile(0.5),
lambda x: x.expanding(min_periods=5).median(),
lambda x: x.expanding(min_periods=5).apply(sum, raw=False),
lambda x: x.expanding(min_periods=5).apply(sum, raw=True),
],
)
def test_moment_functions_zero_length(f):
# GH 8056
s = Series(dtype=np.float64)
s_expected = s
df1 = DataFrame()
df1_expected = df1
df2 = DataFrame(columns=["a"])
df2["a"] = df2["a"].astype("float64")
df2_expected = df2
s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
df1_result = f(df1)
tm.assert_frame_equal(df1_result, df1_expected)
df2_result = f(df2)
tm.assert_frame_equal(df2_result, df2_expected)
def test_expanding_apply_empty_series(engine_and_raw):
engine, raw = engine_and_raw
ser = Series([], dtype=np.float64)
tm.assert_series_equal(
ser, ser.expanding().apply(lambda x: x.mean(), raw=raw, engine=engine)
)
def test_expanding_apply_min_periods_0(engine_and_raw):
# GH 8080
engine, raw = engine_and_raw
s = Series([None, None, None])
result = s.expanding(min_periods=0).apply(lambda x: len(x), raw=raw, engine=engine)
expected = Series([1.0, 2.0, 3.0])
tm.assert_series_equal(result, expected)
def test_expanding_cov_diff_index():
# GH 7512
s1 = Series([1, 2, 3], index=[0, 1, 2])
s2 = Series([1, 3], index=[0, 2])
result = s1.expanding().cov(s2)
expected = Series([None, None, 2.0])
tm.assert_series_equal(result, expected)
s2a = Series([1, None, 3], index=[0, 1, 2])
result = s1.expanding().cov(s2a)
tm.assert_series_equal(result, expected)
s1 = Series([7, 8, 10], index=[0, 1, 3])
s2 = Series([7, 9, 10], index=[0, 2, 3])
result = s1.expanding().cov(s2)
expected = Series([None, None, None, 4.5])
tm.assert_series_equal(result, expected)
def test_expanding_corr_diff_index():
# GH 7512
s1 = Series([1, 2, 3], index=[0, 1, 2])
s2 = Series([1, 3], index=[0, 2])
result = s1.expanding().corr(s2)
expected = Series([None, None, 1.0])
tm.assert_series_equal(result, expected)
s2a = Series([1, None, 3], index=[0, 1, 2])
result = s1.expanding().corr(s2a)
tm.assert_series_equal(result, expected)
s1 = Series([7, 8, 10], index=[0, 1, 3])
s2 = Series([7, 9, 10], index=[0, 2, 3])
result = s1.expanding().corr(s2)
expected = Series([None, None, None, 1.0])
tm.assert_series_equal(result, expected)
def test_expanding_cov_pairwise_diff_length():
# GH 7512
df1 = DataFrame([[1, 5], [3, 2], [3, 9]], columns=Index(["A", "B"], name="foo"))
df1a = DataFrame(
[[1, 5], [3, 9]], index=[0, 2], columns=Index(["A", "B"], name="foo")
)
df2 = DataFrame(
[[5, 6], [None, None], [2, 1]], columns=Index(["X", "Y"], name="foo")
)
df2a = DataFrame(
[[5, 6], [2, 1]], index=[0, 2], columns=Index(["X", "Y"], name="foo")
)
# TODO: xref gh-15826
# .loc is not preserving the names
result1 = df1.expanding().cov(df2, pairwise=True).loc[2]
result2 = df1.expanding().cov(df2a, pairwise=True).loc[2]
result3 = df1a.expanding().cov(df2, pairwise=True).loc[2]
result4 = df1a.expanding().cov(df2a, pairwise=True).loc[2]
expected = DataFrame(
[[-3.0, -6.0], [-5.0, -10.0]],
columns=Index(["A", "B"], name="foo"),
index=Index(["X", "Y"], name="foo"),
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected)
tm.assert_frame_equal(result4, expected)
def test_expanding_corr_pairwise_diff_length():
# GH 7512
df1 = DataFrame(
[[1, 2], [3, 2], [3, 4]], columns=["A", "B"], index=Index(range(3), name="bar")
)
df1a = DataFrame(
[[1, 2], [3, 4]], index=Index([0, 2], name="bar"), columns=["A", "B"]
)
df2 = DataFrame(
[[5, 6], [None, None], [2, 1]],
columns=["X", "Y"],
index=Index(range(3), name="bar"),
)
df2a = DataFrame(
[[5, 6], [2, 1]], index=Index([0, 2], name="bar"), columns=["X", "Y"]
)
result1 = df1.expanding().corr(df2, pairwise=True).loc[2]
result2 = df1.expanding().corr(df2a, pairwise=True).loc[2]
result3 = df1a.expanding().corr(df2, pairwise=True).loc[2]
result4 = df1a.expanding().corr(df2a, pairwise=True).loc[2]
expected = DataFrame(
[[-1.0, -1.0], [-1.0, -1.0]], columns=["A", "B"], index=Index(["X", "Y"])
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected)
tm.assert_frame_equal(result4, expected)
def test_expanding_apply_args_kwargs(engine_and_raw):
def mean_w_arg(x, const):
return np.mean(x) + const
engine, raw = engine_and_raw
df = DataFrame(np.random.default_rng(2).random((20, 3)))
expected = df.expanding().apply(np.mean, engine=engine, raw=raw) + 20.0
result = df.expanding().apply(mean_w_arg, engine=engine, raw=raw, args=(20,))
tm.assert_frame_equal(result, expected)
result = df.expanding().apply(mean_w_arg, raw=raw, kwargs={"const": 20})
tm.assert_frame_equal(result, expected)
def test_numeric_only_frame(arithmetic_win_operators, numeric_only):
# GH#46560
kernel = arithmetic_win_operators
df = DataFrame({"a": [1], "b": 2, "c": 3})
df["c"] = df["c"].astype(object)
expanding = df.expanding()
op = getattr(expanding, kernel, None)
if op is not None:
result = op(numeric_only=numeric_only)
columns = ["a", "b"] if numeric_only else ["a", "b", "c"]
expected = df[columns].agg([kernel]).reset_index(drop=True).astype(float)
assert list(expected.columns) == columns
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("kernel", ["corr", "cov"])
@pytest.mark.parametrize("use_arg", [True, False])
def test_numeric_only_corr_cov_frame(kernel, numeric_only, use_arg):
# GH#46560
df = DataFrame({"a": [1, 2, 3], "b": 2, "c": 3})
df["c"] = df["c"].astype(object)
arg = (df,) if use_arg else ()
expanding = df.expanding()
op = getattr(expanding, kernel)
result = op(*arg, numeric_only=numeric_only)
# Compare result to op using float dtypes, dropping c when numeric_only is True
columns = ["a", "b"] if numeric_only else ["a", "b", "c"]
df2 = df[columns].astype(float)
arg2 = (df2,) if use_arg else ()
expanding2 = df2.expanding()
op2 = getattr(expanding2, kernel)
expected = op2(*arg2, numeric_only=numeric_only)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", [int, object])
def test_numeric_only_series(arithmetic_win_operators, numeric_only, dtype):
# GH#46560
kernel = arithmetic_win_operators
ser = Series([1], dtype=dtype)
expanding = ser.expanding()
op = getattr(expanding, kernel)
if numeric_only and dtype is object:
msg = f"Expanding.{kernel} does not implement numeric_only"
with pytest.raises(NotImplementedError, match=msg):
op(numeric_only=numeric_only)
else:
result = op(numeric_only=numeric_only)
expected = ser.agg([kernel]).reset_index(drop=True).astype(float)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("kernel", ["corr", "cov"])
@pytest.mark.parametrize("use_arg", [True, False])
@pytest.mark.parametrize("dtype", [int, object])
def test_numeric_only_corr_cov_series(kernel, use_arg, numeric_only, dtype):
# GH#46560
ser = Series([1, 2, 3], dtype=dtype)
arg = (ser,) if use_arg else ()
expanding = ser.expanding()
op = getattr(expanding, kernel)
if numeric_only and dtype is object:
msg = f"Expanding.{kernel} does not implement numeric_only"
with pytest.raises(NotImplementedError, match=msg):
op(*arg, numeric_only=numeric_only)
else:
result = op(*arg, numeric_only=numeric_only)
ser2 = ser.astype(float)
arg2 = (ser2,) if use_arg else ()
expanding2 = ser2.expanding()
op2 = getattr(expanding2, kernel)
expected = op2(*arg2, numeric_only=numeric_only)
tm.assert_series_equal(result, expected)
def test_keyword_quantile_deprecated():
# GH #52550
ser = Series([1, 2, 3, 4])
with tm.assert_produces_warning(FutureWarning):
ser.expanding().quantile(quantile=0.5)