Traktor/myenv/Lib/site-packages/scipy/fft/_fftlog_backend.py
2024-05-26 05:12:46 +02:00

198 lines
5.1 KiB
Python

import numpy as np
from warnings import warn
from ._basic import rfft, irfft
from ..special import loggamma, poch
from scipy._lib._array_api import array_namespace, copy
__all__ = ['fht', 'ifht', 'fhtoffset']
# constants
LN_2 = np.log(2)
def fht(a, dln, mu, offset=0.0, bias=0.0):
xp = array_namespace(a)
# size of transform
n = a.shape[-1]
# bias input array
if bias != 0:
# a_q(r) = a(r) (r/r_c)^{-q}
j_c = (n-1)/2
j = xp.arange(n, dtype=xp.float64)
a = a * xp.exp(-bias*(j - j_c)*dln)
# compute FHT coefficients
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias))
# transform
A = _fhtq(a, u, xp=xp)
# bias output array
if bias != 0:
# A(k) = A_q(k) (k/k_c)^{-q} (k_c r_c)^{-q}
A *= xp.exp(-bias*((j - j_c)*dln + offset))
return A
def ifht(A, dln, mu, offset=0.0, bias=0.0):
xp = array_namespace(A)
# size of transform
n = A.shape[-1]
# bias input array
if bias != 0:
# A_q(k) = A(k) (k/k_c)^{q} (k_c r_c)^{q}
j_c = (n-1)/2
j = xp.arange(n, dtype=xp.float64)
A = A * xp.exp(bias*((j - j_c)*dln + offset))
# compute FHT coefficients
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias, inverse=True))
# transform
a = _fhtq(A, u, inverse=True, xp=xp)
# bias output array
if bias != 0:
# a(r) = a_q(r) (r/r_c)^{q}
a /= xp.exp(-bias*(j - j_c)*dln)
return a
def fhtcoeff(n, dln, mu, offset=0.0, bias=0.0, inverse=False):
"""Compute the coefficient array for a fast Hankel transform."""
lnkr, q = offset, bias
# Hankel transform coefficients
# u_m = (kr)^{-i 2m pi/(n dlnr)} U_mu(q + i 2m pi/(n dlnr))
# with U_mu(x) = 2^x Gamma((mu+1+x)/2)/Gamma((mu+1-x)/2)
xp = (mu+1+q)/2
xm = (mu+1-q)/2
y = np.linspace(0, np.pi*(n//2)/(n*dln), n//2+1)
u = np.empty(n//2+1, dtype=complex)
v = np.empty(n//2+1, dtype=complex)
u.imag[:] = y
u.real[:] = xm
loggamma(u, out=v)
u.real[:] = xp
loggamma(u, out=u)
y *= 2*(LN_2 - lnkr)
u.real -= v.real
u.real += LN_2*q
u.imag += v.imag
u.imag += y
np.exp(u, out=u)
# fix last coefficient to be real
u.imag[-1] = 0
# deal with special cases
if not np.isfinite(u[0]):
# write u_0 = 2^q Gamma(xp)/Gamma(xm) = 2^q poch(xm, xp-xm)
# poch() handles special cases for negative integers correctly
u[0] = 2**q * poch(xm, xp-xm)
# the coefficient may be inf or 0, meaning the transform or the
# inverse transform, respectively, is singular
# check for singular transform or singular inverse transform
if np.isinf(u[0]) and not inverse:
warn('singular transform; consider changing the bias', stacklevel=3)
# fix coefficient to obtain (potentially correct) transform anyway
u = copy(u)
u[0] = 0
elif u[0] == 0 and inverse:
warn('singular inverse transform; consider changing the bias', stacklevel=3)
# fix coefficient to obtain (potentially correct) inverse anyway
u = copy(u)
u[0] = np.inf
return u
def fhtoffset(dln, mu, initial=0.0, bias=0.0):
"""Return optimal offset for a fast Hankel transform.
Returns an offset close to `initial` that fulfils the low-ringing
condition of [1]_ for the fast Hankel transform `fht` with logarithmic
spacing `dln`, order `mu` and bias `bias`.
Parameters
----------
dln : float
Uniform logarithmic spacing of the transform.
mu : float
Order of the Hankel transform, any positive or negative real number.
initial : float, optional
Initial value for the offset. Returns the closest value that fulfils
the low-ringing condition.
bias : float, optional
Exponent of power law bias, any positive or negative real number.
Returns
-------
offset : float
Optimal offset of the uniform logarithmic spacing of the transform that
fulfils a low-ringing condition.
Examples
--------
>>> from scipy.fft import fhtoffset
>>> dln = 0.1
>>> mu = 2.0
>>> initial = 0.5
>>> bias = 0.0
>>> offset = fhtoffset(dln, mu, initial, bias)
>>> offset
0.5454581477676637
See Also
--------
fht : Definition of the fast Hankel transform.
References
----------
.. [1] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
"""
lnkr, q = initial, bias
xp = (mu+1+q)/2
xm = (mu+1-q)/2
y = np.pi/(2*dln)
zp = loggamma(xp + 1j*y)
zm = loggamma(xm + 1j*y)
arg = (LN_2 - lnkr)/dln + (zp.imag + zm.imag)/np.pi
return lnkr + (arg - np.round(arg))*dln
def _fhtq(a, u, inverse=False, *, xp=None):
"""Compute the biased fast Hankel transform.
This is the basic FFTLog routine.
"""
if xp is None:
xp = np
# size of transform
n = a.shape[-1]
# biased fast Hankel transform via real FFT
A = rfft(a, axis=-1)
if not inverse:
# forward transform
A *= u
else:
# backward transform
A /= xp.conj(u)
A = irfft(A, n, axis=-1)
A = xp.flip(A, axis=-1)
return A