397 lines
15 KiB
Python
397 lines
15 KiB
Python
import pytest
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_array_less, assert_allclose, assert_equal
|
|
|
|
import scipy._lib._elementwise_iterative_method as eim
|
|
from scipy import stats
|
|
from scipy.optimize._differentiate import (_differentiate as differentiate,
|
|
_EERRORINCREASE)
|
|
|
|
class TestDifferentiate:
|
|
|
|
def f(self, x):
|
|
return stats.norm().cdf(x)
|
|
|
|
@pytest.mark.parametrize('x', [0.6, np.linspace(-0.05, 1.05, 10)])
|
|
def test_basic(self, x):
|
|
# Invert distribution CDF and compare against distribution `ppf`
|
|
res = differentiate(self.f, x)
|
|
ref = stats.norm().pdf(x)
|
|
np.testing.assert_allclose(res.df, ref)
|
|
# This would be nice, but doesn't always work out. `error` is an
|
|
# estimate, not a bound.
|
|
assert_array_less(abs(res.df - ref), res.error)
|
|
assert res.x.shape == ref.shape
|
|
|
|
@pytest.mark.parametrize('case', stats._distr_params.distcont)
|
|
def test_accuracy(self, case):
|
|
distname, params = case
|
|
dist = getattr(stats, distname)(*params)
|
|
x = dist.median() + 0.1
|
|
res = differentiate(dist.cdf, x)
|
|
ref = dist.pdf(x)
|
|
assert_allclose(res.df, ref, atol=1e-10)
|
|
|
|
@pytest.mark.parametrize('order', [1, 6])
|
|
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
|
|
def test_vectorization(self, order, shape):
|
|
# Test for correct functionality, output shapes, and dtypes for various
|
|
# input shapes.
|
|
x = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
|
|
n = np.size(x)
|
|
|
|
@np.vectorize
|
|
def _differentiate_single(x):
|
|
return differentiate(self.f, x, order=order)
|
|
|
|
def f(x, *args, **kwargs):
|
|
f.nit += 1
|
|
f.feval += 1 if (x.size == n or x.ndim <=1) else x.shape[-1]
|
|
return self.f(x, *args, **kwargs)
|
|
f.nit = -1
|
|
f.feval = 0
|
|
|
|
res = differentiate(f, x, order=order)
|
|
refs = _differentiate_single(x).ravel()
|
|
|
|
ref_x = [ref.x for ref in refs]
|
|
assert_allclose(res.x.ravel(), ref_x)
|
|
assert_equal(res.x.shape, shape)
|
|
|
|
ref_df = [ref.df for ref in refs]
|
|
assert_allclose(res.df.ravel(), ref_df)
|
|
assert_equal(res.df.shape, shape)
|
|
|
|
ref_error = [ref.error for ref in refs]
|
|
assert_allclose(res.error.ravel(), ref_error, atol=5e-15)
|
|
assert_equal(res.error.shape, shape)
|
|
|
|
ref_success = [ref.success for ref in refs]
|
|
assert_equal(res.success.ravel(), ref_success)
|
|
assert_equal(res.success.shape, shape)
|
|
assert np.issubdtype(res.success.dtype, np.bool_)
|
|
|
|
ref_flag = [ref.status for ref in refs]
|
|
assert_equal(res.status.ravel(), ref_flag)
|
|
assert_equal(res.status.shape, shape)
|
|
assert np.issubdtype(res.status.dtype, np.integer)
|
|
|
|
ref_nfev = [ref.nfev for ref in refs]
|
|
assert_equal(res.nfev.ravel(), ref_nfev)
|
|
assert_equal(np.max(res.nfev), f.feval)
|
|
assert_equal(res.nfev.shape, res.x.shape)
|
|
assert np.issubdtype(res.nfev.dtype, np.integer)
|
|
|
|
ref_nit = [ref.nit for ref in refs]
|
|
assert_equal(res.nit.ravel(), ref_nit)
|
|
assert_equal(np.max(res.nit), f.nit)
|
|
assert_equal(res.nit.shape, res.x.shape)
|
|
assert np.issubdtype(res.nit.dtype, np.integer)
|
|
|
|
def test_flags(self):
|
|
# Test cases that should produce different status flags; show that all
|
|
# can be produced simultaneously.
|
|
rng = np.random.default_rng(5651219684984213)
|
|
def f(xs, js):
|
|
f.nit += 1
|
|
funcs = [lambda x: x - 2.5, # converges
|
|
lambda x: np.exp(x)*rng.random(), # error increases
|
|
lambda x: np.exp(x), # reaches maxiter due to order=2
|
|
lambda x: np.full_like(x, np.nan)[()]] # stops due to NaN
|
|
res = [funcs[j](x) for x, j in zip(xs, js.ravel())]
|
|
return res
|
|
f.nit = 0
|
|
|
|
args = (np.arange(4, dtype=np.int64),)
|
|
res = differentiate(f, [1]*4, rtol=1e-14, order=2, args=args)
|
|
|
|
ref_flags = np.array([eim._ECONVERGED,
|
|
_EERRORINCREASE,
|
|
eim._ECONVERR,
|
|
eim._EVALUEERR])
|
|
assert_equal(res.status, ref_flags)
|
|
|
|
def test_flags_preserve_shape(self):
|
|
# Same test as above but using `preserve_shape` option to simplify.
|
|
rng = np.random.default_rng(5651219684984213)
|
|
def f(x):
|
|
return [x - 2.5, # converges
|
|
np.exp(x)*rng.random(), # error increases
|
|
np.exp(x), # reaches maxiter due to order=2
|
|
np.full_like(x, np.nan)[()]] # stops due to NaN
|
|
|
|
res = differentiate(f, 1, rtol=1e-14, order=2, preserve_shape=True)
|
|
|
|
ref_flags = np.array([eim._ECONVERGED,
|
|
_EERRORINCREASE,
|
|
eim._ECONVERR,
|
|
eim._EVALUEERR])
|
|
assert_equal(res.status, ref_flags)
|
|
|
|
def test_preserve_shape(self):
|
|
# Test `preserve_shape` option
|
|
def f(x):
|
|
return [x, np.sin(3*x), x+np.sin(10*x), np.sin(20*x)*(x-1)**2]
|
|
|
|
x = 0
|
|
ref = [1, 3*np.cos(3*x), 1+10*np.cos(10*x),
|
|
20*np.cos(20*x)*(x-1)**2 + 2*np.sin(20*x)*(x-1)]
|
|
res = differentiate(f, x, preserve_shape=True)
|
|
assert_allclose(res.df, ref)
|
|
|
|
def test_convergence(self):
|
|
# Test that the convergence tolerances behave as expected
|
|
dist = stats.norm()
|
|
x = 1
|
|
f = dist.cdf
|
|
ref = dist.pdf(x)
|
|
kwargs0 = dict(atol=0, rtol=0, order=4)
|
|
|
|
kwargs = kwargs0.copy()
|
|
kwargs['atol'] = 1e-3
|
|
res1 = differentiate(f, x, **kwargs)
|
|
assert_array_less(abs(res1.df - ref), 1e-3)
|
|
kwargs['atol'] = 1e-6
|
|
res2 = differentiate(f, x, **kwargs)
|
|
assert_array_less(abs(res2.df - ref), 1e-6)
|
|
assert_array_less(abs(res2.df - ref), abs(res1.df - ref))
|
|
|
|
kwargs = kwargs0.copy()
|
|
kwargs['rtol'] = 1e-3
|
|
res1 = differentiate(f, x, **kwargs)
|
|
assert_array_less(abs(res1.df - ref), 1e-3 * np.abs(ref))
|
|
kwargs['rtol'] = 1e-6
|
|
res2 = differentiate(f, x, **kwargs)
|
|
assert_array_less(abs(res2.df - ref), 1e-6 * np.abs(ref))
|
|
assert_array_less(abs(res2.df - ref), abs(res1.df - ref))
|
|
|
|
def test_step_parameters(self):
|
|
# Test that step factors have the expected effect on accuracy
|
|
dist = stats.norm()
|
|
x = 1
|
|
f = dist.cdf
|
|
ref = dist.pdf(x)
|
|
|
|
res1 = differentiate(f, x, initial_step=0.5, maxiter=1)
|
|
res2 = differentiate(f, x, initial_step=0.05, maxiter=1)
|
|
assert abs(res2.df - ref) < abs(res1.df - ref)
|
|
|
|
res1 = differentiate(f, x, step_factor=2, maxiter=1)
|
|
res2 = differentiate(f, x, step_factor=20, maxiter=1)
|
|
assert abs(res2.df - ref) < abs(res1.df - ref)
|
|
|
|
# `step_factor` can be less than 1: `initial_step` is the minimum step
|
|
kwargs = dict(order=4, maxiter=1, step_direction=0)
|
|
res = differentiate(f, x, initial_step=0.5, step_factor=0.5, **kwargs)
|
|
ref = differentiate(f, x, initial_step=1, step_factor=2, **kwargs)
|
|
assert_allclose(res.df, ref.df, rtol=5e-15)
|
|
|
|
# This is a similar test for one-sided difference
|
|
kwargs = dict(order=2, maxiter=1, step_direction=1)
|
|
res = differentiate(f, x, initial_step=1, step_factor=2, **kwargs)
|
|
ref = differentiate(f, x, initial_step=1/np.sqrt(2), step_factor=0.5,
|
|
**kwargs)
|
|
assert_allclose(res.df, ref.df, rtol=5e-15)
|
|
|
|
kwargs['step_direction'] = -1
|
|
res = differentiate(f, x, initial_step=1, step_factor=2, **kwargs)
|
|
ref = differentiate(f, x, initial_step=1/np.sqrt(2), step_factor=0.5,
|
|
**kwargs)
|
|
assert_allclose(res.df, ref.df, rtol=5e-15)
|
|
|
|
def test_step_direction(self):
|
|
# test that `step_direction` works as expected
|
|
def f(x):
|
|
y = np.exp(x)
|
|
y[(x < 0) + (x > 2)] = np.nan
|
|
return y
|
|
|
|
x = np.linspace(0, 2, 10)
|
|
step_direction = np.zeros_like(x)
|
|
step_direction[x < 0.6], step_direction[x > 1.4] = 1, -1
|
|
res = differentiate(f, x, step_direction=step_direction)
|
|
assert_allclose(res.df, np.exp(x))
|
|
assert np.all(res.success)
|
|
|
|
def test_vectorized_step_direction_args(self):
|
|
# test that `step_direction` and `args` are vectorized properly
|
|
def f(x, p):
|
|
return x ** p
|
|
|
|
def df(x, p):
|
|
return p * x ** (p - 1)
|
|
|
|
x = np.array([1, 2, 3, 4]).reshape(-1, 1, 1)
|
|
hdir = np.array([-1, 0, 1]).reshape(1, -1, 1)
|
|
p = np.array([2, 3]).reshape(1, 1, -1)
|
|
res = differentiate(f, x, step_direction=hdir, args=(p,))
|
|
ref = np.broadcast_to(df(x, p), res.df.shape)
|
|
assert_allclose(res.df, ref)
|
|
|
|
def test_maxiter_callback(self):
|
|
# Test behavior of `maxiter` parameter and `callback` interface
|
|
x = 0.612814
|
|
dist = stats.norm()
|
|
maxiter = 3
|
|
|
|
def f(x):
|
|
res = dist.cdf(x)
|
|
return res
|
|
|
|
default_order = 8
|
|
res = differentiate(f, x, maxiter=maxiter, rtol=1e-15)
|
|
assert not np.any(res.success)
|
|
assert np.all(res.nfev == default_order + 1 + (maxiter - 1)*2)
|
|
assert np.all(res.nit == maxiter)
|
|
|
|
def callback(res):
|
|
callback.iter += 1
|
|
callback.res = res
|
|
assert hasattr(res, 'x')
|
|
assert res.df not in callback.dfs
|
|
callback.dfs.add(res.df)
|
|
assert res.status == eim._EINPROGRESS
|
|
if callback.iter == maxiter:
|
|
raise StopIteration
|
|
callback.iter = -1 # callback called once before first iteration
|
|
callback.res = None
|
|
callback.dfs = set()
|
|
|
|
res2 = differentiate(f, x, callback=callback, rtol=1e-15)
|
|
# terminating with callback is identical to terminating due to maxiter
|
|
# (except for `status`)
|
|
for key in res.keys():
|
|
if key == 'status':
|
|
assert res[key] == eim._ECONVERR
|
|
assert callback.res[key] == eim._EINPROGRESS
|
|
assert res2[key] == eim._ECALLBACK
|
|
else:
|
|
assert res2[key] == callback.res[key] == res[key]
|
|
|
|
@pytest.mark.parametrize("hdir", (-1, 0, 1))
|
|
@pytest.mark.parametrize("x", (0.65, [0.65, 0.7]))
|
|
@pytest.mark.parametrize("dtype", (np.float16, np.float32, np.float64))
|
|
def test_dtype(self, hdir, x, dtype):
|
|
# Test that dtypes are preserved
|
|
x = np.asarray(x, dtype=dtype)[()]
|
|
|
|
def f(x):
|
|
assert x.dtype == dtype
|
|
return np.exp(x)
|
|
|
|
def callback(res):
|
|
assert res.x.dtype == dtype
|
|
assert res.df.dtype == dtype
|
|
assert res.error.dtype == dtype
|
|
|
|
res = differentiate(f, x, order=4, step_direction=hdir,
|
|
callback=callback)
|
|
assert res.x.dtype == dtype
|
|
assert res.df.dtype == dtype
|
|
assert res.error.dtype == dtype
|
|
eps = np.finfo(dtype).eps
|
|
assert_allclose(res.df, np.exp(res.x), rtol=np.sqrt(eps))
|
|
|
|
def test_input_validation(self):
|
|
# Test input validation for appropriate error messages
|
|
|
|
message = '`func` must be callable.'
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(None, 1)
|
|
|
|
message = 'Abscissae and function output must be real numbers.'
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, -4+1j)
|
|
|
|
message = "When `preserve_shape=False`, the shape of the array..."
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: [1, 2, 3], [-2, -3])
|
|
|
|
message = 'Tolerances and step parameters must be non-negative...'
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, atol=-1)
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, rtol='ekki')
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, initial_step=None)
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, step_factor=object())
|
|
|
|
message = '`maxiter` must be a positive integer.'
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, maxiter=1.5)
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, maxiter=0)
|
|
|
|
message = '`order` must be a positive integer'
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, order=1.5)
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, order=0)
|
|
|
|
message = '`preserve_shape` must be True or False.'
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, preserve_shape='herring')
|
|
|
|
message = '`callback` must be callable.'
|
|
with pytest.raises(ValueError, match=message):
|
|
differentiate(lambda x: x, 1, callback='shrubbery')
|
|
|
|
def test_special_cases(self):
|
|
# Test edge cases and other special cases
|
|
|
|
# Test that integers are not passed to `f`
|
|
# (otherwise this would overflow)
|
|
def f(x):
|
|
assert np.issubdtype(x.dtype, np.floating)
|
|
return x ** 99 - 1
|
|
|
|
res = differentiate(f, 7, rtol=1e-10)
|
|
assert res.success
|
|
assert_allclose(res.df, 99*7.**98)
|
|
|
|
# Test that if success is achieved in the correct number
|
|
# of iterations if function is a polynomial. Ideally, all polynomials
|
|
# of order 0-2 would get exact result with 0 refinement iterations,
|
|
# all polynomials of order 3-4 would be differentiated exactly after
|
|
# 1 iteration, etc. However, it seems that _differentiate needs an
|
|
# extra iteration to detect convergence based on the error estimate.
|
|
|
|
for n in range(6):
|
|
x = 1.5
|
|
def f(x):
|
|
return 2*x**n
|
|
|
|
ref = 2*n*x**(n-1)
|
|
|
|
res = differentiate(f, x, maxiter=1, order=max(1, n))
|
|
assert_allclose(res.df, ref, rtol=1e-15)
|
|
assert_equal(res.error, np.nan)
|
|
|
|
res = differentiate(f, x, order=max(1, n))
|
|
assert res.success
|
|
assert res.nit == 2
|
|
assert_allclose(res.df, ref, rtol=1e-15)
|
|
|
|
# Test scalar `args` (not in tuple)
|
|
def f(x, c):
|
|
return c*x - 1
|
|
|
|
res = differentiate(f, 2, args=3)
|
|
assert_allclose(res.df, 3)
|
|
|
|
@pytest.mark.xfail
|
|
@pytest.mark.parametrize("case", ( # function, evaluation point
|
|
(lambda x: (x - 1) ** 3, 1),
|
|
(lambda x: np.where(x > 1, (x - 1) ** 5, (x - 1) ** 3), 1)
|
|
))
|
|
def test_saddle_gh18811(self, case):
|
|
# With default settings, _differentiate will not always converge when
|
|
# the true derivative is exactly zero. This tests that specifying a
|
|
# (tight) `atol` alleviates the problem. See discussion in gh-18811.
|
|
atol = 1e-16
|
|
res = differentiate(*case, step_direction=[-1, 0, 1], atol=atol)
|
|
assert np.all(res.success)
|
|
assert_allclose(res.df, 0, atol=atol)
|