347 lines
14 KiB
Python
347 lines
14 KiB
Python
"""
|
|
=======================================
|
|
Signal processing (:mod:`scipy.signal`)
|
|
=======================================
|
|
|
|
Convolution
|
|
===========
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
convolve -- N-D convolution.
|
|
correlate -- N-D correlation.
|
|
fftconvolve -- N-D convolution using the FFT.
|
|
oaconvolve -- N-D convolution using the overlap-add method.
|
|
convolve2d -- 2-D convolution (more options).
|
|
correlate2d -- 2-D correlation (more options).
|
|
sepfir2d -- Convolve with a 2-D separable FIR filter.
|
|
choose_conv_method -- Chooses faster of FFT and direct convolution methods.
|
|
correlation_lags -- Determines lag indices for 1D cross-correlation.
|
|
|
|
B-splines
|
|
=========
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
gauss_spline -- Gaussian approximation to the B-spline basis function.
|
|
cspline1d -- Coefficients for 1-D cubic (3rd order) B-spline.
|
|
qspline1d -- Coefficients for 1-D quadratic (2nd order) B-spline.
|
|
cspline2d -- Coefficients for 2-D cubic (3rd order) B-spline.
|
|
qspline2d -- Coefficients for 2-D quadratic (2nd order) B-spline.
|
|
cspline1d_eval -- Evaluate a cubic spline at the given points.
|
|
qspline1d_eval -- Evaluate a quadratic spline at the given points.
|
|
spline_filter -- Smoothing spline (cubic) filtering of a rank-2 array.
|
|
|
|
Filtering
|
|
=========
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
order_filter -- N-D order filter.
|
|
medfilt -- N-D median filter.
|
|
medfilt2d -- 2-D median filter (faster).
|
|
wiener -- N-D Wiener filter.
|
|
|
|
symiirorder1 -- 2nd-order IIR filter (cascade of first-order systems).
|
|
symiirorder2 -- 4th-order IIR filter (cascade of second-order systems).
|
|
lfilter -- 1-D FIR and IIR digital linear filtering.
|
|
lfiltic -- Construct initial conditions for `lfilter`.
|
|
lfilter_zi -- Compute an initial state zi for the lfilter function that
|
|
-- corresponds to the steady state of the step response.
|
|
filtfilt -- A forward-backward filter.
|
|
savgol_filter -- Filter a signal using the Savitzky-Golay filter.
|
|
|
|
deconvolve -- 1-D deconvolution using lfilter.
|
|
|
|
sosfilt -- 1-D IIR digital linear filtering using
|
|
-- a second-order sections filter representation.
|
|
sosfilt_zi -- Compute an initial state zi for the sosfilt function that
|
|
-- corresponds to the steady state of the step response.
|
|
sosfiltfilt -- A forward-backward filter for second-order sections.
|
|
hilbert -- Compute 1-D analytic signal, using the Hilbert transform.
|
|
hilbert2 -- Compute 2-D analytic signal, using the Hilbert transform.
|
|
|
|
decimate -- Downsample a signal.
|
|
detrend -- Remove linear and/or constant trends from data.
|
|
resample -- Resample using Fourier method.
|
|
resample_poly -- Resample using polyphase filtering method.
|
|
upfirdn -- Upsample, apply FIR filter, downsample.
|
|
|
|
Filter design
|
|
=============
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
bilinear -- Digital filter from an analog filter using
|
|
-- the bilinear transform.
|
|
bilinear_zpk -- Digital filter from an analog filter using
|
|
-- the bilinear transform.
|
|
findfreqs -- Find array of frequencies for computing filter response.
|
|
firls -- FIR filter design using least-squares error minimization.
|
|
firwin -- Windowed FIR filter design, with frequency response
|
|
-- defined as pass and stop bands.
|
|
firwin2 -- Windowed FIR filter design, with arbitrary frequency
|
|
-- response.
|
|
freqs -- Analog filter frequency response from TF coefficients.
|
|
freqs_zpk -- Analog filter frequency response from ZPK coefficients.
|
|
freqz -- Digital filter frequency response from TF coefficients.
|
|
freqz_zpk -- Digital filter frequency response from ZPK coefficients.
|
|
sosfreqz -- Digital filter frequency response for SOS format filter.
|
|
gammatone -- FIR and IIR gammatone filter design.
|
|
group_delay -- Digital filter group delay.
|
|
iirdesign -- IIR filter design given bands and gains.
|
|
iirfilter -- IIR filter design given order and critical frequencies.
|
|
kaiser_atten -- Compute the attenuation of a Kaiser FIR filter, given
|
|
-- the number of taps and the transition width at
|
|
-- discontinuities in the frequency response.
|
|
kaiser_beta -- Compute the Kaiser parameter beta, given the desired
|
|
-- FIR filter attenuation.
|
|
kaiserord -- Design a Kaiser window to limit ripple and width of
|
|
-- transition region.
|
|
minimum_phase -- Convert a linear phase FIR filter to minimum phase.
|
|
savgol_coeffs -- Compute the FIR filter coefficients for a Savitzky-Golay
|
|
-- filter.
|
|
remez -- Optimal FIR filter design.
|
|
|
|
unique_roots -- Unique roots and their multiplicities.
|
|
residue -- Partial fraction expansion of b(s) / a(s).
|
|
residuez -- Partial fraction expansion of b(z) / a(z).
|
|
invres -- Inverse partial fraction expansion for analog filter.
|
|
invresz -- Inverse partial fraction expansion for digital filter.
|
|
BadCoefficients -- Warning on badly conditioned filter coefficients.
|
|
|
|
Lower-level filter design functions:
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
abcd_normalize -- Check state-space matrices and ensure they are rank-2.
|
|
band_stop_obj -- Band Stop Objective Function for order minimization.
|
|
besselap -- Return (z,p,k) for analog prototype of Bessel filter.
|
|
buttap -- Return (z,p,k) for analog prototype of Butterworth filter.
|
|
cheb1ap -- Return (z,p,k) for type I Chebyshev filter.
|
|
cheb2ap -- Return (z,p,k) for type II Chebyshev filter.
|
|
cmplx_sort -- Sort roots based on magnitude.
|
|
ellipap -- Return (z,p,k) for analog prototype of elliptic filter.
|
|
lp2bp -- Transform a lowpass filter prototype to a bandpass filter.
|
|
lp2bp_zpk -- Transform a lowpass filter prototype to a bandpass filter.
|
|
lp2bs -- Transform a lowpass filter prototype to a bandstop filter.
|
|
lp2bs_zpk -- Transform a lowpass filter prototype to a bandstop filter.
|
|
lp2hp -- Transform a lowpass filter prototype to a highpass filter.
|
|
lp2hp_zpk -- Transform a lowpass filter prototype to a highpass filter.
|
|
lp2lp -- Transform a lowpass filter prototype to a lowpass filter.
|
|
lp2lp_zpk -- Transform a lowpass filter prototype to a lowpass filter.
|
|
normalize -- Normalize polynomial representation of a transfer function.
|
|
|
|
|
|
|
|
Matlab-style IIR filter design
|
|
==============================
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
butter -- Butterworth
|
|
buttord
|
|
cheby1 -- Chebyshev Type I
|
|
cheb1ord
|
|
cheby2 -- Chebyshev Type II
|
|
cheb2ord
|
|
ellip -- Elliptic (Cauer)
|
|
ellipord
|
|
bessel -- Bessel (no order selection available -- try butterod)
|
|
iirnotch -- Design second-order IIR notch digital filter.
|
|
iirpeak -- Design second-order IIR peak (resonant) digital filter.
|
|
iircomb -- Design IIR comb filter.
|
|
|
|
Continuous-time linear systems
|
|
==============================
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
lti -- Continuous-time linear time invariant system base class.
|
|
StateSpace -- Linear time invariant system in state space form.
|
|
TransferFunction -- Linear time invariant system in transfer function form.
|
|
ZerosPolesGain -- Linear time invariant system in zeros, poles, gain form.
|
|
lsim -- Continuous-time simulation of output to linear system.
|
|
impulse -- Impulse response of linear, time-invariant (LTI) system.
|
|
step -- Step response of continuous-time LTI system.
|
|
freqresp -- Frequency response of a continuous-time LTI system.
|
|
bode -- Bode magnitude and phase data (continuous-time LTI).
|
|
|
|
Discrete-time linear systems
|
|
============================
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
dlti -- Discrete-time linear time invariant system base class.
|
|
StateSpace -- Linear time invariant system in state space form.
|
|
TransferFunction -- Linear time invariant system in transfer function form.
|
|
ZerosPolesGain -- Linear time invariant system in zeros, poles, gain form.
|
|
dlsim -- Simulation of output to a discrete-time linear system.
|
|
dimpulse -- Impulse response of a discrete-time LTI system.
|
|
dstep -- Step response of a discrete-time LTI system.
|
|
dfreqresp -- Frequency response of a discrete-time LTI system.
|
|
dbode -- Bode magnitude and phase data (discrete-time LTI).
|
|
|
|
LTI representations
|
|
===================
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
tf2zpk -- Transfer function to zero-pole-gain.
|
|
tf2sos -- Transfer function to second-order sections.
|
|
tf2ss -- Transfer function to state-space.
|
|
zpk2tf -- Zero-pole-gain to transfer function.
|
|
zpk2sos -- Zero-pole-gain to second-order sections.
|
|
zpk2ss -- Zero-pole-gain to state-space.
|
|
ss2tf -- State-pace to transfer function.
|
|
ss2zpk -- State-space to pole-zero-gain.
|
|
sos2zpk -- Second-order sections to zero-pole-gain.
|
|
sos2tf -- Second-order sections to transfer function.
|
|
cont2discrete -- Continuous-time to discrete-time LTI conversion.
|
|
place_poles -- Pole placement.
|
|
|
|
Waveforms
|
|
=========
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
chirp -- Frequency swept cosine signal, with several freq functions.
|
|
gausspulse -- Gaussian modulated sinusoid.
|
|
max_len_seq -- Maximum length sequence.
|
|
sawtooth -- Periodic sawtooth.
|
|
square -- Square wave.
|
|
sweep_poly -- Frequency swept cosine signal; freq is arbitrary polynomial.
|
|
unit_impulse -- Discrete unit impulse.
|
|
|
|
Window functions
|
|
================
|
|
|
|
For window functions, see the `scipy.signal.windows` namespace.
|
|
|
|
In the `scipy.signal` namespace, there is a convenience function to
|
|
obtain these windows by name:
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
get_window -- Return a window of a given length and type.
|
|
|
|
Wavelets
|
|
========
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
cascade -- Compute scaling function and wavelet from coefficients.
|
|
daub -- Return low-pass.
|
|
morlet -- Complex Morlet wavelet.
|
|
qmf -- Return quadrature mirror filter from low-pass.
|
|
ricker -- Return ricker wavelet.
|
|
morlet2 -- Return Morlet wavelet, compatible with cwt.
|
|
cwt -- Perform continuous wavelet transform.
|
|
|
|
Peak finding
|
|
============
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
argrelmin -- Calculate the relative minima of data.
|
|
argrelmax -- Calculate the relative maxima of data.
|
|
argrelextrema -- Calculate the relative extrema of data.
|
|
find_peaks -- Find a subset of peaks inside a signal.
|
|
find_peaks_cwt -- Find peaks in a 1-D array with wavelet transformation.
|
|
peak_prominences -- Calculate the prominence of each peak in a signal.
|
|
peak_widths -- Calculate the width of each peak in a signal.
|
|
|
|
Spectral analysis
|
|
=================
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
periodogram -- Compute a (modified) periodogram.
|
|
welch -- Compute a periodogram using Welch's method.
|
|
csd -- Compute the cross spectral density, using Welch's method.
|
|
coherence -- Compute the magnitude squared coherence, using Welch's method.
|
|
spectrogram -- Compute the spectrogram (legacy).
|
|
lombscargle -- Computes the Lomb-Scargle periodogram.
|
|
vectorstrength -- Computes the vector strength.
|
|
ShortTimeFFT -- Interface for calculating the \
|
|
:ref:`Short Time Fourier Transform <tutorial_stft>` and \
|
|
its inverse.
|
|
stft -- Compute the Short Time Fourier Transform (legacy).
|
|
istft -- Compute the Inverse Short Time Fourier Transform (legacy).
|
|
check_COLA -- Check the COLA constraint for iSTFT reconstruction.
|
|
check_NOLA -- Check the NOLA constraint for iSTFT reconstruction.
|
|
|
|
Chirp Z-transform and Zoom FFT
|
|
============================================
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
|
|
czt - Chirp z-transform convenience function
|
|
zoom_fft - Zoom FFT convenience function
|
|
CZT - Chirp z-transform function generator
|
|
ZoomFFT - Zoom FFT function generator
|
|
czt_points - Output the z-plane points sampled by a chirp z-transform
|
|
|
|
The functions are simpler to use than the classes, but are less efficient when
|
|
using the same transform on many arrays of the same length, since they
|
|
repeatedly generate the same chirp signal with every call. In these cases,
|
|
use the classes to create a reusable function instead.
|
|
|
|
"""
|
|
|
|
from . import _sigtools, windows
|
|
from ._waveforms import *
|
|
from ._max_len_seq import max_len_seq
|
|
from ._upfirdn import upfirdn
|
|
|
|
from ._spline import (
|
|
cspline2d,
|
|
qspline2d,
|
|
sepfir2d,
|
|
symiirorder1,
|
|
symiirorder2,
|
|
)
|
|
|
|
from ._bsplines import *
|
|
from ._filter_design import *
|
|
from ._fir_filter_design import *
|
|
from ._ltisys import *
|
|
from ._lti_conversion import *
|
|
from ._signaltools import *
|
|
from ._savitzky_golay import savgol_coeffs, savgol_filter
|
|
from ._spectral_py import *
|
|
from ._short_time_fft import *
|
|
from ._wavelets import *
|
|
from ._peak_finding import *
|
|
from ._czt import *
|
|
from .windows import get_window # keep this one in signal namespace
|
|
|
|
# Deprecated namespaces, to be removed in v2.0.0
|
|
from . import (
|
|
bsplines, filter_design, fir_filter_design, lti_conversion, ltisys,
|
|
spectral, signaltools, waveforms, wavelets, spline
|
|
)
|
|
|
|
__all__ = [
|
|
s for s in dir() if not s.startswith("_")
|
|
]
|
|
|
|
from scipy._lib._testutils import PytestTester
|
|
test = PytestTester(__name__)
|
|
del PytestTester
|