Traktor/myenv/Lib/site-packages/sklearn/datasets/_lfw.py
2024-05-26 05:12:46 +02:00

645 lines
22 KiB
Python

"""Labeled Faces in the Wild (LFW) dataset
This dataset is a collection of JPEG pictures of famous people collected
over the internet, all details are available on the official website:
http://vis-www.cs.umass.edu/lfw/
"""
# Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause
import logging
from numbers import Integral, Real
from os import PathLike, listdir, makedirs, remove
from os.path import exists, isdir, join
import numpy as np
from joblib import Memory
from ..utils import Bunch
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params
from ..utils.fixes import tarfile_extractall
from ._base import (
RemoteFileMetadata,
_fetch_remote,
get_data_home,
load_descr,
)
logger = logging.getLogger(__name__)
# The original data can be found in:
# http://vis-www.cs.umass.edu/lfw/lfw.tgz
ARCHIVE = RemoteFileMetadata(
filename="lfw.tgz",
url="https://ndownloader.figshare.com/files/5976018",
checksum="055f7d9c632d7370e6fb4afc7468d40f970c34a80d4c6f50ffec63f5a8d536c0",
)
# The original funneled data can be found in:
# http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz
FUNNELED_ARCHIVE = RemoteFileMetadata(
filename="lfw-funneled.tgz",
url="https://ndownloader.figshare.com/files/5976015",
checksum="b47c8422c8cded889dc5a13418c4bc2abbda121092b3533a83306f90d900100a",
)
# The original target data can be found in:
# http://vis-www.cs.umass.edu/lfw/pairsDevTrain.txt',
# http://vis-www.cs.umass.edu/lfw/pairsDevTest.txt',
# http://vis-www.cs.umass.edu/lfw/pairs.txt',
TARGETS = (
RemoteFileMetadata(
filename="pairsDevTrain.txt",
url="https://ndownloader.figshare.com/files/5976012",
checksum="1d454dada7dfeca0e7eab6f65dc4e97a6312d44cf142207be28d688be92aabfa",
),
RemoteFileMetadata(
filename="pairsDevTest.txt",
url="https://ndownloader.figshare.com/files/5976009",
checksum="7cb06600ea8b2814ac26e946201cdb304296262aad67d046a16a7ec85d0ff87c",
),
RemoteFileMetadata(
filename="pairs.txt",
url="https://ndownloader.figshare.com/files/5976006",
checksum="ea42330c62c92989f9d7c03237ed5d591365e89b3e649747777b70e692dc1592",
),
)
#
# Common private utilities for data fetching from the original LFW website
# local disk caching, and image decoding.
#
def _check_fetch_lfw(
data_home=None, funneled=True, download_if_missing=True, n_retries=3, delay=1.0
):
"""Helper function to download any missing LFW data"""
data_home = get_data_home(data_home=data_home)
lfw_home = join(data_home, "lfw_home")
if not exists(lfw_home):
makedirs(lfw_home)
for target in TARGETS:
target_filepath = join(lfw_home, target.filename)
if not exists(target_filepath):
if download_if_missing:
logger.info("Downloading LFW metadata: %s", target.url)
_fetch_remote(
target, dirname=lfw_home, n_retries=n_retries, delay=delay
)
else:
raise OSError("%s is missing" % target_filepath)
if funneled:
data_folder_path = join(lfw_home, "lfw_funneled")
archive = FUNNELED_ARCHIVE
else:
data_folder_path = join(lfw_home, "lfw")
archive = ARCHIVE
if not exists(data_folder_path):
archive_path = join(lfw_home, archive.filename)
if not exists(archive_path):
if download_if_missing:
logger.info("Downloading LFW data (~200MB): %s", archive.url)
_fetch_remote(
archive, dirname=lfw_home, n_retries=n_retries, delay=delay
)
else:
raise OSError("%s is missing" % archive_path)
import tarfile
logger.debug("Decompressing the data archive to %s", data_folder_path)
with tarfile.open(archive_path, "r:gz") as fp:
tarfile_extractall(fp, path=lfw_home)
remove(archive_path)
return lfw_home, data_folder_path
def _load_imgs(file_paths, slice_, color, resize):
"""Internally used to load images"""
try:
from PIL import Image
except ImportError:
raise ImportError(
"The Python Imaging Library (PIL) is required to load data "
"from jpeg files. Please refer to "
"https://pillow.readthedocs.io/en/stable/installation.html "
"for installing PIL."
)
# compute the portion of the images to load to respect the slice_ parameter
# given by the caller
default_slice = (slice(0, 250), slice(0, 250))
if slice_ is None:
slice_ = default_slice
else:
slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice))
h_slice, w_slice = slice_
h = (h_slice.stop - h_slice.start) // (h_slice.step or 1)
w = (w_slice.stop - w_slice.start) // (w_slice.step or 1)
if resize is not None:
resize = float(resize)
h = int(resize * h)
w = int(resize * w)
# allocate some contiguous memory to host the decoded image slices
n_faces = len(file_paths)
if not color:
faces = np.zeros((n_faces, h, w), dtype=np.float32)
else:
faces = np.zeros((n_faces, h, w, 3), dtype=np.float32)
# iterate over the collected file path to load the jpeg files as numpy
# arrays
for i, file_path in enumerate(file_paths):
if i % 1000 == 0:
logger.debug("Loading face #%05d / %05d", i + 1, n_faces)
# Checks if jpeg reading worked. Refer to issue #3594 for more
# details.
pil_img = Image.open(file_path)
pil_img = pil_img.crop(
(w_slice.start, h_slice.start, w_slice.stop, h_slice.stop)
)
if resize is not None:
pil_img = pil_img.resize((w, h))
face = np.asarray(pil_img, dtype=np.float32)
if face.ndim == 0:
raise RuntimeError(
"Failed to read the image file %s, "
"Please make sure that libjpeg is installed" % file_path
)
face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats
if not color:
# average the color channels to compute a gray levels
# representation
face = face.mean(axis=2)
faces[i, ...] = face
return faces
#
# Task #1: Face Identification on picture with names
#
def _fetch_lfw_people(
data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0
):
"""Perform the actual data loading for the lfw people dataset
This operation is meant to be cached by a joblib wrapper.
"""
# scan the data folder content to retain people with more that
# `min_faces_per_person` face pictures
person_names, file_paths = [], []
for person_name in sorted(listdir(data_folder_path)):
folder_path = join(data_folder_path, person_name)
if not isdir(folder_path):
continue
paths = [join(folder_path, f) for f in sorted(listdir(folder_path))]
n_pictures = len(paths)
if n_pictures >= min_faces_per_person:
person_name = person_name.replace("_", " ")
person_names.extend([person_name] * n_pictures)
file_paths.extend(paths)
n_faces = len(file_paths)
if n_faces == 0:
raise ValueError(
"min_faces_per_person=%d is too restrictive" % min_faces_per_person
)
target_names = np.unique(person_names)
target = np.searchsorted(target_names, person_names)
faces = _load_imgs(file_paths, slice_, color, resize)
# shuffle the faces with a deterministic RNG scheme to avoid having
# all faces of the same person in a row, as it would break some
# cross validation and learning algorithms such as SGD and online
# k-means that make an IID assumption
indices = np.arange(n_faces)
np.random.RandomState(42).shuffle(indices)
faces, target = faces[indices], target[indices]
return faces, target, target_names
@validate_params(
{
"data_home": [str, PathLike, None],
"funneled": ["boolean"],
"resize": [Interval(Real, 0, None, closed="neither"), None],
"min_faces_per_person": [Interval(Integral, 0, None, closed="left"), None],
"color": ["boolean"],
"slice_": [tuple, Hidden(None)],
"download_if_missing": ["boolean"],
"return_X_y": ["boolean"],
"n_retries": [Interval(Integral, 1, None, closed="left")],
"delay": [Interval(Real, 0.0, None, closed="neither")],
},
prefer_skip_nested_validation=True,
)
def fetch_lfw_people(
*,
data_home=None,
funneled=True,
resize=0.5,
min_faces_per_person=0,
color=False,
slice_=(slice(70, 195), slice(78, 172)),
download_if_missing=True,
return_X_y=False,
n_retries=3,
delay=1.0,
):
"""Load the Labeled Faces in the Wild (LFW) people dataset \
(classification).
Download it if necessary.
================= =======================
Classes 5749
Samples total 13233
Dimensionality 5828
Features real, between 0 and 255
================= =======================
Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.
Parameters
----------
data_home : str or path-like, default=None
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
funneled : bool, default=True
Download and use the funneled variant of the dataset.
resize : float or None, default=0.5
Ratio used to resize the each face picture. If `None`, no resizing is
performed.
min_faces_per_person : int, default=None
The extracted dataset will only retain pictures of people that have at
least `min_faces_per_person` different pictures.
color : bool, default=False
Keep the 3 RGB channels instead of averaging them to a single
gray level channel. If color is True the shape of the data has
one more dimension than the shape with color = False.
slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172))
Provide a custom 2D slice (height, width) to extract the
'interesting' part of the jpeg files and avoid use statistical
correlation from the background.
download_if_missing : bool, default=True
If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.
return_X_y : bool, default=False
If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch
object. See below for more information about the `dataset.data` and
`dataset.target` object.
.. versionadded:: 0.20
n_retries : int, default=3
Number of retries when HTTP errors are encountered.
.. versionadded:: 1.5
delay : float, default=1.0
Number of seconds between retries.
.. versionadded:: 1.5
Returns
-------
dataset : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : numpy array of shape (13233, 2914)
Each row corresponds to a ravelled face image
of original size 62 x 47 pixels.
Changing the ``slice_`` or resize parameters will change the
shape of the output.
images : numpy array of shape (13233, 62, 47)
Each row is a face image corresponding to one of the 5749 people in
the dataset. Changing the ``slice_``
or resize parameters will change the shape of the output.
target : numpy array of shape (13233,)
Labels associated to each face image.
Those labels range from 0-5748 and correspond to the person IDs.
target_names : numpy array of shape (5749,)
Names of all persons in the dataset.
Position in array corresponds to the person ID in the target array.
DESCR : str
Description of the Labeled Faces in the Wild (LFW) dataset.
(data, target) : tuple if ``return_X_y`` is True
A tuple of two ndarray. The first containing a 2D array of
shape (n_samples, n_features) with each row representing one
sample and each column representing the features. The second
ndarray of shape (n_samples,) containing the target samples.
.. versionadded:: 0.20
Examples
--------
>>> from sklearn.datasets import fetch_lfw_people
>>> lfw_people = fetch_lfw_people()
>>> lfw_people.data.shape
(13233, 2914)
>>> lfw_people.target.shape
(13233,)
>>> for name in lfw_people.target_names[:5]:
... print(name)
AJ Cook
AJ Lamas
Aaron Eckhart
Aaron Guiel
Aaron Patterson
"""
lfw_home, data_folder_path = _check_fetch_lfw(
data_home=data_home,
funneled=funneled,
download_if_missing=download_if_missing,
n_retries=n_retries,
delay=delay,
)
logger.debug("Loading LFW people faces from %s", lfw_home)
# wrap the loader in a memoizing function that will return memmaped data
# arrays for optimal memory usage
m = Memory(location=lfw_home, compress=6, verbose=0)
load_func = m.cache(_fetch_lfw_people)
# load and memoize the pairs as np arrays
faces, target, target_names = load_func(
data_folder_path,
resize=resize,
min_faces_per_person=min_faces_per_person,
color=color,
slice_=slice_,
)
X = faces.reshape(len(faces), -1)
fdescr = load_descr("lfw.rst")
if return_X_y:
return X, target
# pack the results as a Bunch instance
return Bunch(
data=X, images=faces, target=target, target_names=target_names, DESCR=fdescr
)
#
# Task #2: Face Verification on pairs of face pictures
#
def _fetch_lfw_pairs(
index_file_path, data_folder_path, slice_=None, color=False, resize=None
):
"""Perform the actual data loading for the LFW pairs dataset
This operation is meant to be cached by a joblib wrapper.
"""
# parse the index file to find the number of pairs to be able to allocate
# the right amount of memory before starting to decode the jpeg files
with open(index_file_path, "rb") as index_file:
split_lines = [ln.decode().strip().split("\t") for ln in index_file]
pair_specs = [sl for sl in split_lines if len(sl) > 2]
n_pairs = len(pair_specs)
# iterating over the metadata lines for each pair to find the filename to
# decode and load in memory
target = np.zeros(n_pairs, dtype=int)
file_paths = list()
for i, components in enumerate(pair_specs):
if len(components) == 3:
target[i] = 1
pair = (
(components[0], int(components[1]) - 1),
(components[0], int(components[2]) - 1),
)
elif len(components) == 4:
target[i] = 0
pair = (
(components[0], int(components[1]) - 1),
(components[2], int(components[3]) - 1),
)
else:
raise ValueError("invalid line %d: %r" % (i + 1, components))
for j, (name, idx) in enumerate(pair):
try:
person_folder = join(data_folder_path, name)
except TypeError:
person_folder = join(data_folder_path, str(name, "UTF-8"))
filenames = list(sorted(listdir(person_folder)))
file_path = join(person_folder, filenames[idx])
file_paths.append(file_path)
pairs = _load_imgs(file_paths, slice_, color, resize)
shape = list(pairs.shape)
n_faces = shape.pop(0)
shape.insert(0, 2)
shape.insert(0, n_faces // 2)
pairs.shape = shape
return pairs, target, np.array(["Different persons", "Same person"])
@validate_params(
{
"subset": [StrOptions({"train", "test", "10_folds"})],
"data_home": [str, PathLike, None],
"funneled": ["boolean"],
"resize": [Interval(Real, 0, None, closed="neither"), None],
"color": ["boolean"],
"slice_": [tuple, Hidden(None)],
"download_if_missing": ["boolean"],
"n_retries": [Interval(Integral, 1, None, closed="left")],
"delay": [Interval(Real, 0.0, None, closed="neither")],
},
prefer_skip_nested_validation=True,
)
def fetch_lfw_pairs(
*,
subset="train",
data_home=None,
funneled=True,
resize=0.5,
color=False,
slice_=(slice(70, 195), slice(78, 172)),
download_if_missing=True,
n_retries=3,
delay=1.0,
):
"""Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
Download it if necessary.
================= =======================
Classes 2
Samples total 13233
Dimensionality 5828
Features real, between 0 and 255
================= =======================
In the official `README.txt`_ this task is described as the
"Restricted" task. As I am not sure as to implement the
"Unrestricted" variant correctly, I left it as unsupported for now.
.. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt
The original images are 250 x 250 pixels, but the default slice and resize
arguments reduce them to 62 x 47.
Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.
Parameters
----------
subset : {'train', 'test', '10_folds'}, default='train'
Select the dataset to load: 'train' for the development training
set, 'test' for the development test set, and '10_folds' for the
official evaluation set that is meant to be used with a 10-folds
cross validation.
data_home : str or path-like, default=None
Specify another download and cache folder for the datasets. By
default all scikit-learn data is stored in '~/scikit_learn_data'
subfolders.
funneled : bool, default=True
Download and use the funneled variant of the dataset.
resize : float, default=0.5
Ratio used to resize the each face picture.
color : bool, default=False
Keep the 3 RGB channels instead of averaging them to a single
gray level channel. If color is True the shape of the data has
one more dimension than the shape with color = False.
slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172))
Provide a custom 2D slice (height, width) to extract the
'interesting' part of the jpeg files and avoid use statistical
correlation from the background.
download_if_missing : bool, default=True
If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.
n_retries : int, default=3
Number of retries when HTTP errors are encountered.
.. versionadded:: 1.5
delay : float, default=1.0
Number of seconds between retries.
.. versionadded:: 1.5
Returns
-------
data : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : ndarray of shape (2200, 5828). Shape depends on ``subset``.
Each row corresponds to 2 ravel'd face images
of original size 62 x 47 pixels.
Changing the ``slice_``, ``resize`` or ``subset`` parameters
will change the shape of the output.
pairs : ndarray of shape (2200, 2, 62, 47). Shape depends on ``subset``
Each row has 2 face images corresponding
to same or different person from the dataset
containing 5749 people. Changing the ``slice_``,
``resize`` or ``subset`` parameters will change the shape of the
output.
target : numpy array of shape (2200,). Shape depends on ``subset``.
Labels associated to each pair of images.
The two label values being different persons or the same person.
target_names : numpy array of shape (2,)
Explains the target values of the target array.
0 corresponds to "Different person", 1 corresponds to "same person".
DESCR : str
Description of the Labeled Faces in the Wild (LFW) dataset.
Examples
--------
>>> from sklearn.datasets import fetch_lfw_pairs
>>> lfw_pairs_train = fetch_lfw_pairs(subset='train')
>>> list(lfw_pairs_train.target_names)
['Different persons', 'Same person']
>>> lfw_pairs_train.pairs.shape
(2200, 2, 62, 47)
>>> lfw_pairs_train.data.shape
(2200, 5828)
>>> lfw_pairs_train.target.shape
(2200,)
"""
lfw_home, data_folder_path = _check_fetch_lfw(
data_home=data_home,
funneled=funneled,
download_if_missing=download_if_missing,
n_retries=n_retries,
delay=delay,
)
logger.debug("Loading %s LFW pairs from %s", subset, lfw_home)
# wrap the loader in a memoizing function that will return memmaped data
# arrays for optimal memory usage
m = Memory(location=lfw_home, compress=6, verbose=0)
load_func = m.cache(_fetch_lfw_pairs)
# select the right metadata file according to the requested subset
label_filenames = {
"train": "pairsDevTrain.txt",
"test": "pairsDevTest.txt",
"10_folds": "pairs.txt",
}
if subset not in label_filenames:
raise ValueError(
"subset='%s' is invalid: should be one of %r"
% (subset, list(sorted(label_filenames.keys())))
)
index_file_path = join(lfw_home, label_filenames[subset])
# load and memoize the pairs as np arrays
pairs, target, target_names = load_func(
index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_
)
fdescr = load_descr("lfw.rst")
# pack the results as a Bunch instance
return Bunch(
data=pairs.reshape(len(pairs), -1),
pairs=pairs,
target=target,
target_names=target_names,
DESCR=fdescr,
)