Traktor/myenv/Lib/site-packages/sklearn/utils/_seq_dataset.pxd.tp
2024-05-26 05:12:46 +02:00

77 lines
2.5 KiB
Plaintext

{{py:
"""
Dataset abstractions for sequential data access.
Template file for easily generate fused types consistent code using Tempita
(https://github.com/cython/cython/blob/master/Cython/Tempita/_tempita.py).
Generated file: _seq_dataset.pxd
Each class is duplicated for all dtypes (float and double). The keywords
between double braces are substituted in setup.py.
"""
# name_suffix, c_type
dtypes = [('64', 'float64_t'),
('32', 'float32_t')]
}}
"""Dataset abstractions for sequential data access."""
from ._typedefs cimport float32_t, float64_t, intp_t, uint32_t
# SequentialDataset and its two concrete subclasses are (optionally randomized)
# iterators over the rows of a matrix X and corresponding target values y.
{{for name_suffix, c_type in dtypes}}
#------------------------------------------------------------------------------
cdef class SequentialDataset{{name_suffix}}:
cdef int current_index
cdef int[::1] index
cdef int *index_data_ptr
cdef Py_ssize_t n_samples
cdef uint32_t seed
cdef void shuffle(self, uint32_t seed) noexcept nogil
cdef int _get_next_index(self) noexcept nogil
cdef int _get_random_index(self) noexcept nogil
cdef void _sample(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
int *nnz, {{c_type}} *y, {{c_type}} *sample_weight,
int current_index) noexcept nogil
cdef void next(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
int *nnz, {{c_type}} *y, {{c_type}} *sample_weight) noexcept nogil
cdef int random(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
int *nnz, {{c_type}} *y, {{c_type}} *sample_weight) noexcept nogil
cdef class ArrayDataset{{name_suffix}}(SequentialDataset{{name_suffix}}):
cdef const {{c_type}}[:, ::1] X
cdef const {{c_type}}[::1] Y
cdef const {{c_type}}[::1] sample_weights
cdef Py_ssize_t n_features
cdef intp_t X_stride
cdef {{c_type}} *X_data_ptr
cdef {{c_type}} *Y_data_ptr
cdef const int[::1] feature_indices
cdef int *feature_indices_ptr
cdef {{c_type}} *sample_weight_data
cdef class CSRDataset{{name_suffix}}(SequentialDataset{{name_suffix}}):
cdef const {{c_type}}[::1] X_data
cdef const int[::1] X_indptr
cdef const int[::1] X_indices
cdef const {{c_type}}[::1] Y
cdef const {{c_type}}[::1] sample_weights
cdef {{c_type}} *X_data_ptr
cdef int *X_indptr_ptr
cdef int *X_indices_ptr
cdef {{c_type}} *Y_data_ptr
cdef {{c_type}} *sample_weight_data
{{endfor}}