Traktor/myenv/Lib/site-packages/sympy/discrete/recurrences.py
2024-05-26 05:12:46 +02:00

167 lines
5.0 KiB
Python

"""
Recurrences
"""
from sympy.core import S, sympify
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import as_int
def linrec(coeffs, init, n):
r"""
Evaluation of univariate linear recurrences of homogeneous type
having coefficients independent of the recurrence variable.
Parameters
==========
coeffs : iterable
Coefficients of the recurrence
init : iterable
Initial values of the recurrence
n : Integer
Point of evaluation for the recurrence
Notes
=====
Let `y(n)` be the recurrence of given type, ``c`` be the sequence
of coefficients, ``b`` be the sequence of initial/base values of the
recurrence and ``k`` (equal to ``len(c)``) be the order of recurrence.
Then,
.. math :: y(n) = \begin{cases} b_n & 0 \le n < k \\
c_0 y(n-1) + c_1 y(n-2) + \cdots + c_{k-1} y(n-k) & n \ge k
\end{cases}
Let `x_0, x_1, \ldots, x_n` be a sequence and consider the transformation
that maps each polynomial `f(x)` to `T(f(x))` where each power `x^i` is
replaced by the corresponding value `x_i`. The sequence is then a solution
of the recurrence if and only if `T(x^i p(x)) = 0` for each `i \ge 0` where
`p(x) = x^k - c_0 x^(k-1) - \cdots - c_{k-1}` is the characteristic
polynomial.
Then `T(f(x)p(x)) = 0` for each polynomial `f(x)` (as it is a linear
combination of powers `x^i`). Now, if `x^n` is congruent to
`g(x) = a_0 x^0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}` modulo `p(x)`, then
`T(x^n) = x_n` is equal to
`T(g(x)) = a_0 x_0 + a_1 x_1 + \cdots + a_{k-1} x_{k-1}`.
Computation of `x^n`,
given `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
is performed using exponentiation by squaring (refer to [1_]) with
an additional reduction step performed to retain only first `k` powers
of `x` in the representation of `x^n`.
Examples
========
>>> from sympy.discrete.recurrences import linrec
>>> from sympy.abc import x, y, z
>>> linrec(coeffs=[1, 1], init=[0, 1], n=10)
55
>>> linrec(coeffs=[1, 1], init=[x, y], n=10)
34*x + 55*y
>>> linrec(coeffs=[x, y], init=[0, 1], n=5)
x**2*y + x*(x**3 + 2*x*y) + y**2
>>> linrec(coeffs=[1, 2, 3, 0, 0, 4], init=[x, y, z], n=16)
13576*x + 5676*y + 2356*z
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponentiation_by_squaring
.. [2] https://en.wikipedia.org/w/index.php?title=Modular_exponentiation&section=6#Matrices
See Also
========
sympy.polys.agca.extensions.ExtensionElement.__pow__
"""
if not coeffs:
return S.Zero
if not iterable(coeffs):
raise TypeError("Expected a sequence of coefficients for"
" the recurrence")
if not iterable(init):
raise TypeError("Expected a sequence of values for the initialization"
" of the recurrence")
n = as_int(n)
if n < 0:
raise ValueError("Point of evaluation of recurrence must be a "
"non-negative integer")
c = [sympify(arg) for arg in coeffs]
b = [sympify(arg) for arg in init]
k = len(c)
if len(b) > k:
raise TypeError("Count of initial values should not exceed the "
"order of the recurrence")
else:
b += [S.Zero]*(k - len(b)) # remaining initial values default to zero
if n < k:
return b[n]
terms = [u*v for u, v in zip(linrec_coeffs(c, n), b)]
return sum(terms[:-1], terms[-1])
def linrec_coeffs(c, n):
r"""
Compute the coefficients of n'th term in linear recursion
sequence defined by c.
`x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`.
It computes the coefficients by using binary exponentiation.
This function is used by `linrec` and `_eval_pow_by_cayley`.
Parameters
==========
c = coefficients of the divisor polynomial
n = exponent of x, so dividend is x^n
"""
k = len(c)
def _square_and_reduce(u, offset):
# squares `(u_0 + u_1 x + u_2 x^2 + \cdots + u_{k-1} x^k)` (and
# multiplies by `x` if offset is 1) and reduces the above result of
# length upto `2k` to `k` using the characteristic equation of the
# recurrence given by, `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
w = [S.Zero]*(2*len(u) - 1 + offset)
for i, p in enumerate(u):
for j, q in enumerate(u):
w[offset + i + j] += p*q
for j in range(len(w) - 1, k - 1, -1):
for i in range(k):
w[j - i - 1] += w[j]*c[i]
return w[:k]
def _final_coeffs(n):
# computes the final coefficient list - `cf` corresponding to the
# point at which recurrence is to be evalauted - `n`, such that,
# `y(n) = cf_0 y(k-1) + cf_1 y(k-2) + \cdots + cf_{k-1} y(0)`
if n < k:
return [S.Zero]*n + [S.One] + [S.Zero]*(k - n - 1)
else:
return _square_and_reduce(_final_coeffs(n // 2), n % 2)
return _final_coeffs(n)